Sheinkin has an architect's sense of form: how much to say here, when to jump there, and how cantilevered parts work together to create a deft and seemingly effortless whole. His tale is a lively one, peppered with arresting first-person quotations, and it never takes too long to immerse readers in what he calls, with considerable understatement, "a big story." This is pulse-pounding history for Alex Rider fans.
Marc Aronson
Bomb is a 2013 Newbery Honor, winner of the YALSA Award for Excellence in Nonfiction, Winner of the Robert F. Sibert Medal, and a National Book Awards finalist for Young People's Literature.
Bomb is a 2013 Newbery Honor, winner of the YALSA Award for Excellence in Nonfiction, Winner of the Robert F. Sibert Medal, and a National Book Awards finalist for Young People's Literature.
Bomb: The Race to Build--and Steal--the World's Most Dangerous Weapon
Narrated by Roy Samuelson
Steve SheinkinUnabridged — 7 hours, 11 minutes
Bomb: The Race to Build--and Steal--the World's Most Dangerous Weapon
Narrated by Roy Samuelson
Steve SheinkinUnabridged — 7 hours, 11 minutes
Audiobook (Digital)
Free with a B&N Audiobooks Subscription | Cancel Anytime
Already Subscribed?
Sign in to Your BN.com Account
Related collections and offers
FREE
with a B&N Audiobooks Subscription
Overview
Bomb is a 2013 Newbery Honor, winner of the YALSA Award for Excellence in Nonfiction, Winner of the Robert F. Sibert Medal, and a National Book Awards finalist for Young People's Literature.
Editorial Reviews
…in this fast-paced thriller that happens to be fascinatingly true…[Sheinkin] brings to intriguing life the historical figures who can seem so remote to modern kids.…
Mary Quattlebaum
This superb and exciting work of nonfiction would be a fine tonic for any jaded adolescent who thinks history is "boring." It's also an excellent primer for adult readers who may have forgotten, or never learned, the remarkable story of how nuclear weaponry was first imagined, invented and deployedand of how an international arms race began well before there was such a thing as an atomic bomb.” The Wall Street Journal
“A must-read…” Publishers Weekly, starred review
“A superb tale of an era and an effort that forever changed our world.” Kirkus Reviews, starred review
“[a] complicated thriller that intercuts action with the deftness of a Hollywood blockbuster.” Booklist
“...reads like an international spy thriller, and that's the beauty of it.” School Library Journal, starred review
“This is edge-of-the seat material that will resonate with YAs who clamor for true spy stories, and it will undoubtedly engross a cross-market audience of adults who dozed through the World War II unit in high school.” Bulletin of the Center of Children’s Books, starred review
The atomic bomb was born during World War II, rushed frantically to completion, and exploded in a blinding blaze of destruction. As Sheinkinprize-winning author of The Notorious Benedict Arnoldexplains, he sees three main threads to the story: Americans building the bomb, Soviets trying to steal it, and Allies attempting to sabotage German efforts towards a bomb. While short chapters segue from one strand to another, the cast of characters expands to include brilliant physicists headed by an intense Robert Oppenheimer, wily Russian spies, courageous resistance fighters, and implacable military commanders. Important players are pictured at the beginning of each chapter in a black-and-white photomontage. Readers follow the action from 1938, when German scientists discover uranium atoms can be split, to the nerve-wracking test of a plutonium bomb in 1945 (not needed to win the war in Europe) and far beyond, as Japanese cities are destroyed, the Pacific war ends, and spies confess. In terms of pure adventure, the most exciting part is the heroism of Norwegian commandos braving deep winter snow to blow up a German heavy-water plant. The saddest part may be the deliberate destruction of Oppenheimer's reputation when President Truman and the military fear he will oppose future use of the bomb. The narrative, related in staccato sentences, is sometimes marred by overworked expressions or hyperactive verbs; the photos and numerous quotations from participants give the illusion of a retro documentary. Although Sheinkin touches on the proliferation of nuclear weapons and the threat of destruction hanging over the planet, larger issues of personal responsibility and human alienation in a world dominated by expanding technology are not explored. Adults will need to present further materialfor able readers, teachers might introduce Friedrich Durrenmatt's fascinating play, The Physicists (Grove, 1964), sure to inspire discussion of morality and mortality. Reviewer: Barbara L. Talcroft
Sheinkin skillfully piques the interest of readers, from pre-teen through adult, by combining all the pieces of the puzzle leading up to the development and implementation of the nuclear weapons used by the United States against Japan in 1945. He brings the story to life by introducing a varied cast of characters along the way. The spies, inventors, physicists, code breakers, laboratory workers, resistance fighters, and political leaders involved in the race for the ultimate weapon and the climactic end of World War II are presented in relatable terms. The story opens with a little known character, Harry Gold, as he is about to be apprehended by the FBI after years of investigation for espionage. The scene is set for the back story of all the other figures in the complex history of the project. Readers become informed participant observers along the way. There is just enough science in the book to educate the reader about atomic energy without overwhelming those not scientifically inclined. The photographs, notes and index are outstanding. This well-paced and very human story reminds the reader of the long-range impact of the bomb on the generations after the first use warfare. Readers are also reminded of the continuing concerns about the use of nuclear energy. "One of history's most amazing examples of teamwork and genius and poise under pressure" is also a caveat for our children: "It's a story with no end in sight. And like it or not, you're in it." Sheinkin's previous book, The Notorious Benedict Arnold, won numerous awards, and this work is bound to join those illustrious ranks. It combines elements of a gripping suspense thriller with the plain truth and realism of its subject, ever reminding us of the "story" within history. This title is highly recommended for all public libraries, as well as academic collections. Reviewer: Jane Murphy
Real-life spy stories can read like the best fiction, and Sheinkin (The Notorious Benedict Arnold, 2009) knows exactly how to write them. In Bomb, he interweaves three stories of high espionage, starting with Harry Gold, the spy who fed the Soviets the secrets of Los Alamos. Then there is Knut Haukelid, a Norwegian resistance fighter whose derring-do prevented the Germans from attaining the bomb toward the end of World War II. Finally, there are the scientists of the Manhattan project, led by Robert Oppenheimer, who understood better than anyone how this weapon would change the course of the future (“If atomic bombs are to be added as new weapons to the arsenals of a warring world…then the time will come when mankind will curse the names of Los Alamos and Hiroshima”). With history is this edge-of-your-seat riveting, it is easy to see why Sheinkin’s latest landed among the National Book Awards nominees this year.
(c) Copyright 2011. Library Journals LLC, a wholly owned subsidiary of Media Source, Inc. No redistribution permitted.
Gr 5 Up—"Harry Gold was right: This is a big story." So begins this depiction of the "creation-and theft-of the deadliest weapon ever invented." As he did in The Notorious Benedict Arnold (Roaring Brook, 2010), Sheinkin has again brought his superior talent for storytelling to bear in what is truly a gripping account of discovery, espionage, and revolutionary changes in both physics and the modern world. This fascinating tale, packed with a wide cast of characters, focuses mainly on three individuals: spy for the Soviets Harry Gold, leader of the Manhattan Project J. Robert Oppenheimer, and Knut Haukelid, who sabotaged German bomb efforts while working for the Norwegian resistance. Sheinkin skillfully combines lucid, conversational snapshots of the science behind the atomic bomb with a fast-paced narrative of the remarkable people who made it possible and attempted to steal it. Handsomely designed and loaded with archival photos and primary-source documents, the accessible volume lays out how the bomb was envisioned and brought to fruition. While the historical information and hard facts presented here will likely be new to the intended audience, they in no way overwhelm readers or detract from the thoroughly researched, well-documented account. It reads like an international spy thriller, and that's the beauty of it.—Brian Odom, Pelham Public Library, AL
In late December 1938, German chemist Otto Hahn discovered that uranium atoms could be split, and just a few months later the race to build an atomic bomb was on. The story unfolds in three parts, covering American attempts to build the bomb, how the Soviets tried to steal American designs and how the Americans tried to keep the Germans from building a bomb. It was the eve of World War II, and the fate of the world was at stake, "[b]ut how was a theoretical physicist supposed to save the world?" It's a true spy thriller, ranging from the football stadium at the University of Chicago to the mountains of Norway, from the deserts of New Mexico to laboratories in East Tennessee, and all along the way spies in the United States were feeding sensitive information to the KGB. Groups of photographs are sprinkled throughout the volume, offering just enough visual support for the splendid character development in the writing, and thorough documentation is provided in the backmatter. It takes a lot of work to make a complicated subject clear and exciting, and from his prodigious research and storytelling skill, Sheinkin has created a nonfiction story young people will want to read. A superb tale of an era and an effort that forever changed our world. (source notes, quotation notes, acknowledgments, photo credits, index) (Nonfiction. 10 & up)
Product Details
BN ID: | 2940171902827 |
---|---|
Publisher: | Penguin Random House |
Publication date: | 11/15/2019 |
Edition description: | Unabridged |
Age Range: | 10 - 13 Years |
Related Subjects
- Awards
- Kids
- History - Kids
- United States History - Kids
- Military History - Kids
- 20th Century United States History - Kids
- World War II - Kids
- Marshall, Elizabeth (-1964)
- Soils->Scotland->Girvan region
- 2012 National Book Awards->Young People's Literature Finalist
- 2013 Newbery Honor Books
- 2013 Sibert Medal Winner
- 2013 Texas Tayshas Reading List
- 2013 YALSA Award for Excellence in Nonfiction Finalists
- 2013 YALSA Award for Excellence in Nonfiction Winner
- Washington Post Best Children's Books of 2012
Read an Excerpt
Bomb
The Race to Build-and Steal-the World's Most Dangerous Weapon
By Steve Sheinkin
Roaring Brook Press
Copyright © 2012 Steve SheinkinAll rights reserved.
ISBN: 978-1-59643-861-3
CHAPTER 1
PART 1: THREE-WAY RACE
SKINNY SUPERHERO
HARRY GOLD WAS RIGHT: This is a big story. It's the story of the creation — and theft — of the deadliest weapon ever invented. The scenes speed around the world, from secret labs to commando raids to street-corner spy meetings. But like most big stories, this one starts small. Let's pick up the action sixteen years before FBI agents cornered Harry Gold in Philadelphia. Let's start 3,000 miles to the west, in Berkeley, California, on a chilly night in February 1934.
On a hill high above town, a man and woman sat in a parked car. In the driver's seat was a very thin young physics professor named Robert Oppenheimer. Beside him sat his date, a graduate student named Melba Phillips. The two looked out at the view of San Francisco Bay.
It was a fine view, but Oppenheimer couldn't seem to stay focused on the date. He turned to Phillips and asked, "Are you comfortable?"
She said she was.
"Mind if I get out and walk for a few minutes?"
She didn't mind.
Oppenheimer got out and strolled into the darkness. Phillips wrapped a coat around her legs and waited. She waited a long time. At some point, she fell asleep.
She woke up in the middle of the night — the seat beside her was still empty. Worried, she stepped onto the road and waved down a passing police car.
"My escort went for a walk hours ago and he hasn't returned," she told the cop.
The police searched the park, but found nothing. They notified headquarters, and a wider search was begun. An officer drove to Oppenheimer's apartment to look for useful clues.
He found the professor in bed, sound asleep.
The cop shook Oppenheimer awake and demanded an explanation. Oppenheimer said he'd gotten out of the car to think about physics. "I just walked and walked," he said, "and I was home and I went to bed. I'm so sorry."
A reporter for the San Francisco Chronicle got hold of the story and wrote an article with the headline: "Forgetful Prof Parks Girl, Takes Self Home."
No one who knew Robert Oppenheimer was the least bit surprised.
* * *
He'd always been different. A girl who knew Robert as a child in New York City described him as "very frail, very pink-cheeked, very shy, and very brilliant."
Oppenheimer was a tougher critic. "A repulsively good little boy," he said of himself. "My life as a child did not prepare me for the fact that the world is full of cruel and bitter things."
He was constantly getting sick, so his nervous parents tried to protect him by keeping him inside. While other boys played in the street, Robert sat alone in his room studying languages, devouring books of literature and science, and filling notebooks with poetry. Around kids his age he was awkward and quiet, never knowing what to say unless he could bring the conversation around to books. Then he would let loose annoying bursts of learning.
"Ask me a question in Latin," he'd say, "and I'll answer you in Greek."
Hoping to toughen up their stick-skinny fourteen-year-old, Robert's parents sent him to a sports summer camp. But he was an awful athlete and simply refused to participate. Then the other campers found out he wrote home every day, and that he liked poetry and looking for minerals. That's when they started calling him "Cutie."
Robert never fought back. He never even responded. That made his tormentors even angrier.
One night, after dinner, Robert went for a walk. A group of boys waited for him in the woods. They grabbed him, dragged him to the icehouse, and tossed him on the rough wood floor. They ripped off his shirt and pants, dipped a brush in green paint, and slapped the dripping bristles against his bony body.
Robert never said a word about the attack to camp counselors. "I don't know how Robert stuck out those remaining weeks," his only friend at camp later said. "Not many boys would have — or could have — but Robert did. It must have been hell for him."
Science saved him. Robert dove deep into chemistry and physics in high school, graduated from Harvard University in 1925, then earned advanced degrees at top universities in Britain and Germany. Even in classes with some of the brightest students in the world, "Oppie," as friends called him, never lost his know-it-all style. He interrupted physics lectures with his own theories, sometimes charging to the chalkboard, grabbing the chalk and declaring. "This can be done much better in the following manner." Classmates got so annoyed they actually signed a petition asking him to allow others to speak in class. After that, Oppenheimer calmed down. A little bit. "The trouble," a friend said, "is that Oppie is so quick on the trigger intellectually, that he puts the other guy at a disadvantage."
He'd lucked into a thrilling time in theoretical physics. Physicists were just beginning to figure out what atoms look like, and how the tiny particles inside them move and affect each other. Theoretical physicists were the explorers of their day, using imagination and mind-bending math to dig deeper and deeper into the surprising inner workings of atoms. Oppenheimer knew he'd found his calling.
When he returned to the States, schools all over the country tried to hire him. He picked the University of California, in Berkeley, where he quickly built the country's best theoretical physics program. Students who came to study with Oppenheimer quickly realized they were in for a wild ride. "When you took a question to him," one student remembered, "he would spend hours — until midnight perhaps — exploring every angle with you."
"He generally would answer patiently," another student agreed, "unless the question was manifestly stupid, in which event his response was likely to be quite caustic."
While sitting in on other professors' lectures, Oppenheimer was known to squirm impatiently. "Oh, come now!" he'd call out. "We all know that. Let's get on with it!"
Oppenheimer's own lectures, according to a student named Edward Gerjuoy, were lightning bursts of ideas, theories, and math on the blackboard. "He spoke quite rapidly, and puffed equally rapidly," Gerjuoy said. "When one cigarette burned down to a fragment he no longer could hold, he lit another." Oppenheimer paced as he lectured, his wiry black hair sticking straight up, his large blue eyes flashing, as he furiously wrote, erased, wrote more, talked, puffed, and bobbed in and out of a cloud of white smoke.
During one lecture, he told students to think about a formula he'd written. There were dozens scrawled all over the board, and a student cut in to ask which formula he was talking about.
"Not that one," Oppenheimer said, pointing to the blackboard, "the one underneath."
There was no formula below that one, the student pointed out.
"Not below, underneath," snapped Oppenheimer. "I have written over it."
As one of Oppenheimer's students put it: "Everyone sort of regarded him, very affectionately, as being sort of nuts."
* * *
"I need physics more than friends," Oppenheimer once told his younger brother. Lost in his studies, Oppenheimer paid little attention to the outside world. He didn't hear about the stock market crash that triggered the Great Depression until six months after it happened. He first voted in a presidential election in 1936, at the age of thirty-two.
"Beginning in late 1936, my interests began to change," he later said. There were a few reasons.
For one thing, the country's ongoing economic troubles began to hit home. "I saw what the Depression was doing to my students. Often they could get no jobs," he said. "And through them, I began to understand how deeply political and economic events could affect men's lives. I began to feel the need to participate more fully in the life of the community." Oppenheimer started going to political meetings and discussion groups. He began giving money to support causes like labor unions and striking farm workers.
But it wasn't only events in the United States that caught Oppenheimer's attention — he was also alarmed by the violent rise of Adolf Hitler and his Nazi Party in Germany. Hitler took over as chancellor of Germany in 1933 and started arresting political opponents and tossing them into concentration camps. With complete control of the country in his hands, Hitler began persecuting German Jews, stripping them of their legal rights, kicking them out of universities and government jobs. Oppenheimer, who was Jewish, still had family in Germany, as well as Jewish friends from his student days. When he heard that Hitler was harassing Jewish physicists, Oppenheimer dedicated a portion of his salary to help them escape Nazi Germany.
At the same time, the German dictator built up a huge military and started hacking out what he called a "Greater Germany," a massive European empire that Hitler insisted rightfully belonged to Germans. He annexed neighboring Austria in 1938, then demanded a huge region of Czechoslovakia. Britain and France were strong enough to stand in Hitler's way — but they caved in to his threats, hoping to preserve peace in Europe.
"This is my last territorial demand in Europe," Hitler promised.
A few months later, he sent German troops into the rest of Czechoslovakia. Just twenty years after the end of World War I, it looked like a second world war was about to explode.
Oppenheimer followed these terrifying events from his home in California, burning with what he described as "a continuing, smoldering fury" toward Adolf Hitler.
But how was a theoretical physicist supposed to save the world?
THE U BUSINESS
ACTUALLY, THEORETICAL PHYSICISTS were about to become more powerful than Oppenheimer had ever imagined.
In late December 1938, in the German capital of Berlin, a chemist named Otto Hahn set up a new experiment in his lab. By the late 1930s, scientists like Hahn understood that everything in the universe is made up of incredibly tiny particles called atoms. They knew that atoms themselves are composed of even smaller particles. Atoms have a central core, or nucleus, made up of protons and neutrons packed tightly together. Surrounding the nucleus are electrons.
Scientists also knew that some atoms are radioactive. That is, their nucleus is naturally unstable — particles break away from the nucleus and shoot out at high speeds. This was useful to experimenters like Hahn, because they could use radioactive elements as tiny cannons.
Hahn began his experiment with a piece of silver-colored metal called uranium. He placed the uranium beside a radioactive element. He knew that neutrons would speed out of the radioactive material. He knew that some of these tiny particles would hit uranium atoms. The big question was: What happens when a speeding neutron crashes into a uranium atom?
The answer was shocking. Hahn was sure he'd made a mistake.
As expected, some of the speeding neutrons hit uranium atoms. What staggered Hahn was that the force of the collision seemed to be causing the uranium atoms to split in two. According to everything scientists knew in 1938, this was impossible.
* * *
At once excited and disturbed, Hahn needed help. He turned to his former partner, Lise Meitner, a Jewish physicist who'd been forced out of Germany by Hitler. Hahn wrote to Meitner at her new office in Sweden, describing the strange results of his experiment.
"Perhaps you can suggest some fantastic explanation," Hahn said of the splitting uranium. "We understand that it really can't break up."
Meitner responded immediately, agreeing that the news was amazing, but adding: "We have experienced so many surprises in nuclear physics that one cannot say without hesitation about anything: 'it's impossible.'"
A few days later Meitner's nephew Otto Frisch, also a physicist, came to Sweden for a visit. Over breakfast, she showed him Hahn's letter.
"I don't believe it," he said. "There's some mistake."
The two went outside to discuss the mystery. "We walked up and down in the snow, I on skis and she on foot," Frisch recalled.
They talked over an idea proposed by the great Danish physicist Niels Bohr. Bohr had recently suggested that the nucleus of an atom might act like a "wobbly droplet" of liquid. If that were true, they asked each other, what would happen if a speeding neutron hit the nucleus of a uranium atom? Could the force of the collision cause the uranium nucleus to stretch and stretch — just like a liquid drop — until it split?
They brushed the snow off a fallen log and sat. Meitner pulled out a scrap of paper and pencil, and Frisch sketched a diagram of a circle stretching into a long oval shape, and finally breaking in two.
"Yes," said Meitner. "That is what I mean."
They agreed: this must be what happened to the uranium atoms in Hahn's lab. Meitner took the pencil and paper and began working out the math.
"If you really do form two such fragments," she said, "they would be pushed apart with great energy."
An atom splitting was incredible enough. But what made this a world-changing discovery was that if atoms really could be split, they would release energy as they broke in two. How much energy? Just enough, Meitner and Frisch calculated, to make a grain of sand jump. That doesn't sound like much — but keep in mind how tiny atoms are. With 238 protons and neutrons, uranium is the largest atom in nature. Still, each atom is incredibly small. A single ounce of uranium has about 100,000,000,000,000,000,000 atoms.
What if you had a twenty-pound lump of uranium? A fifty-pound lump? What if you were able to get all those atoms to split and release energy at the same moment? You'd have by far the most powerful bomb ever built.
"I feel as if I had caught an elephant by its tail, without meaning to," Frisch wrote to his mother. "And now I don't know what to do with it."
* * *
News of the discovery spread quickly within the small world of theoretical physicists. Otto Frisch rushed to Copenhagen, Denmark, catching up with Niels Bohr just as Bohr was boarding a ship for America. Frisch began telling Bohr that uranium atoms could split in two and was halfway through his explanation when Bohr slapped himself on the forehead.
"Oh, what idiots we have all been!" shouted Bohr. "Oh, but it is wonderful. This is just as it must be!"
Bohr was so excited, he ran home to get a blackboard. He set it up in his cabin on the ship and spent most of the two-week Atlantic crossing exploring this new discovery. By the time he reached New York City in January 1939, he was convinced — uranium atoms really could split in two. He took the news to a physics conference in Washington, D.C., where it leaped from one physicist to another.
"Bohr has just come in," one scientist announced. "He has gone crazy. He says a neutron can split uranium!"
A newspaper reporter attending the conference described the news in a short article, which was picked up by papers across the country. The next morning a young physicist named Luis Alvarez was sitting in a barber shop in Berkeley, California. While the barber snipped his hair, Alvarez grabbed the San Francisco Chronicle from a pile of papers beside the chair. "In the second section," he remembered, "buried away some place, was an announcement that some German chemists had found that the uranium atom split into two pieces."
Alvarez put down the paper.
"I got right out of that barber chair and ran as fast as I could." He sprinted to the campus of the University of California, where he taught, and ran from lab to lab with the news, soon bumping into one his fellow professors, Robert Oppenheimer. Alvarez told Oppenheimer that uranium atoms split in two — scientists were calling it fission.
"That's impossible," Oppenheimer said.
Alvarez explained what little he'd read about fission. Oppenheimer quickly agreed it must be true. "It was amazing to see how rapidly his mind worked," said Alvarez.
"The U business is unbelievable," Oppenheimer told a friend a few days later — U is the chemical symbol for uranium. Like all the scientists involved in the discovery, Oppenheimer was fired up by new ideas in physics, deeper glimpses into the weird inner world of atoms. The thought of making weapons of mass destruction had never occurred to him.
But now, suddenly, he couldn't shake it from his mind: fission might make it possible to build a whole new type of explosive.
"Within perhaps a week," recalled a student, "there was on the blackboard in Robert Oppenheimer's office a drawing — a very bad, an execrable drawing — of a bomb."
* * *
Robert Oppenheimer realized something else right away. If it was obvious to him that an atomic bomb might be possible, it was also obvious to everyone else in the global community of top physicists. This would not usually be a problem. In normal times, scientists from around the world freely shared new ideas and theories. But in 1939, normal times were rapidly coming to an end.
(Continues...)
Excerpted from Bomb by Steve Sheinkin. Copyright © 2012 Steve Sheinkin. Excerpted by permission of Roaring Brook Press.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.