Earthquakes: The Sound of Multi-modal Waves
This book is an introduction to wave dynamics as they apply to earthquakes, among the scariest, most unpredictable, and deadliest natural phenomena on Earth. Since studying seismic activity is essentially a study of wave dynamics, this text starts with a discussion of types and representations, including wave-generation mechanics, superposition, and spectral analysis. Simple harmonic motion is used to analyze the mechanisms of wave propagation, and driven and damped systems are used to model the decay rates of various modal frequencies in different media.

Direct correlation to earthquakes in California, Mexico, and Japan is used to illustrate key issues, and actual data from an event in California is presented and analyzed. Our Earth is a dynamic and changing planet, and seismic activity is the result. Hundreds of waves at different frequencies, modes, and amplitudes travel through a variety of different media, from solid rock to molten metals. Each media responds differently to each mode; consequently the result is an enormously complicated dynamic behavior. Earthquakes should serve well as a complimentary text for an upper-school course covering waves and wave mechanics, including sound and acoustics and basic geology. The mathematical requirement includes trigonometry and series summations, which should be accessible to most upper-school and college students. Animation, sound files, and videos help illustrate major topics.

1124326780
Earthquakes: The Sound of Multi-modal Waves
This book is an introduction to wave dynamics as they apply to earthquakes, among the scariest, most unpredictable, and deadliest natural phenomena on Earth. Since studying seismic activity is essentially a study of wave dynamics, this text starts with a discussion of types and representations, including wave-generation mechanics, superposition, and spectral analysis. Simple harmonic motion is used to analyze the mechanisms of wave propagation, and driven and damped systems are used to model the decay rates of various modal frequencies in different media.

Direct correlation to earthquakes in California, Mexico, and Japan is used to illustrate key issues, and actual data from an event in California is presented and analyzed. Our Earth is a dynamic and changing planet, and seismic activity is the result. Hundreds of waves at different frequencies, modes, and amplitudes travel through a variety of different media, from solid rock to molten metals. Each media responds differently to each mode; consequently the result is an enormously complicated dynamic behavior. Earthquakes should serve well as a complimentary text for an upper-school course covering waves and wave mechanics, including sound and acoustics and basic geology. The mathematical requirement includes trigonometry and series summations, which should be accessible to most upper-school and college students. Animation, sound files, and videos help illustrate major topics.

25.49 In Stock
Earthquakes: The Sound of Multi-modal Waves

Earthquakes: The Sound of Multi-modal Waves

by Lawrence C. Wood M.D.
Earthquakes: The Sound of Multi-modal Waves

Earthquakes: The Sound of Multi-modal Waves

by Lawrence C. Wood M.D.

eBook

$25.49  $28.99 Save 12% Current price is $25.49, Original price is $28.99. You Save 12%.

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This book is an introduction to wave dynamics as they apply to earthquakes, among the scariest, most unpredictable, and deadliest natural phenomena on Earth. Since studying seismic activity is essentially a study of wave dynamics, this text starts with a discussion of types and representations, including wave-generation mechanics, superposition, and spectral analysis. Simple harmonic motion is used to analyze the mechanisms of wave propagation, and driven and damped systems are used to model the decay rates of various modal frequencies in different media.

Direct correlation to earthquakes in California, Mexico, and Japan is used to illustrate key issues, and actual data from an event in California is presented and analyzed. Our Earth is a dynamic and changing planet, and seismic activity is the result. Hundreds of waves at different frequencies, modes, and amplitudes travel through a variety of different media, from solid rock to molten metals. Each media responds differently to each mode; consequently the result is an enormously complicated dynamic behavior. Earthquakes should serve well as a complimentary text for an upper-school course covering waves and wave mechanics, including sound and acoustics and basic geology. The mathematical requirement includes trigonometry and series summations, which should be accessible to most upper-school and college students. Animation, sound files, and videos help illustrate major topics.


Product Details

ISBN-13: 9781681743301
Publisher: Morgan & Claypool Publishers
Publication date: 08/01/2016
Series: IOP Concise Physics
Sold by: Barnes & Noble
Format: eBook
Pages: 91
File size: 18 MB
Note: This product may take a few minutes to download.

About the Author

Dr W R Matson has been an Assistant Professor at the University of Minnesota, DePaul University, and Central Michigan University since receiving his doctoral degree in Condensed Matter from Oklahoma State University in 2004. He completed his post-doctoral fellowship at Emory University in the area of destructive rheology and shock physics, during which he developed integrated experimental technology including time-dependent second-order dynamic feedback controls for a remotely governed three-dimensional experimental apparatus. His current research interest is complex flow dynamics in the vicinity of rigid boundaries and obstructive objects. His ultimate research goal is a fundamental theory of viscosity, the physics governing energy distributions and transmission inside any media. The consequences of this research could revolutionize the fields of oceanography, climatology, meteorology, and more.

Table of Contents

Table of Contents: Introduction / On the Subject of Waves / Wave Motion and Propagation / Natural and Driven Frequencies / Synthesis and Spectrum Analysis / Final Thoughts
From the B&N Reads Blog

Customer Reviews