Issues pertaining to urban risks are a pressing concern for those involved in disasters mitigation. Development of effective mitigation strategies requires sound seismic hazard information that is commonly derived through a seismic hazard assessment (SHA). The purpose of SHA is to provide a scientifically consistent estimate of seismic hazard for engineering design and other considerations. The time is ripe to move beyond the old paradigms of the traditional Probabilistic Seismic Hazard Analysis (PSHA).
This two-part volume advocates advanced methods for SHA that utilize up to date earthquake science and basic scientific principles to derive the seismic hazard in terms of a ground motion or related quantity and its occurrence frequency at a site, as well as the associated uncertainty. It aims to: (1) identify the issues in the current SHAs, (2) facilitate the development of a scientifically consistent approach for SHA and (3) disseminate, both in scientific and in engineering practice societies, advanced reliable tools for independent hazard estimates, like NDSHA (neo-deterministic SHA), which incorporates physically based ground motion models. It provides a fresh approach to seismic hazard analysis.
Part 1 deals with the general issues of SHA methodology review and development, as well as with recent advances in earthquake science that may have relevant implications toward an improved SHA. Itis addressed to seismologists, engineers and stake-holders, and aims to contribute to bridging between modern interdisciplinary research and practitioners.
Issues pertaining to urban risks are a pressing concern for those involved in disasters mitigation. Development of effective mitigation strategies requires sound seismic hazard information that is commonly derived through a seismic hazard assessment (SHA). The purpose of SHA is to provide a scientifically consistent estimate of seismic hazard for engineering design and other considerations. The time is ripe to move beyond the old paradigms of the traditional Probabilistic Seismic Hazard Analysis (PSHA).
This two-part volume advocates advanced methods for SHA that utilize up to date earthquake science and basic scientific principles to derive the seismic hazard in terms of a ground motion or related quantity and its occurrence frequency at a site, as well as the associated uncertainty. It aims to: (1) identify the issues in the current SHAs, (2) facilitate the development of a scientifically consistent approach for SHA and (3) disseminate, both in scientific and in engineering practice societies, advanced reliable tools for independent hazard estimates, like NDSHA (neo-deterministic SHA), which incorporates physically based ground motion models. It provides a fresh approach to seismic hazard analysis.
Part 1 deals with the general issues of SHA methodology review and development, as well as with recent advances in earthquake science that may have relevant implications toward an improved SHA. Itis addressed to seismologists, engineers and stake-holders, and aims to contribute to bridging between modern interdisciplinary research and practitioners.
Advanced Seismic Hazard Assessment: Part I: Seismic Hazard Assessment
366Advanced Seismic Hazard Assessment: Part I: Seismic Hazard Assessment
366Product Details
ISBN-13: | 9783034800396 |
---|---|
Publisher: | Springer Basel |
Publication date: | 05/27/2011 |
Series: | Pageoph Topical Volumes Series |
Edition description: | 2011 |
Pages: | 366 |
Product dimensions: | 7.60(w) x 10.24(h) x 0.02(d) |