Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications
This book presents some fundamental concepts behind the basic theories and tools of discrete element methods (DEM), its historical development, and its wide scope of applications in geology, geophysics and rock engineering. Unlike almost all books available on the general subject of DEM, this book includes coverage of both explicit and implicit DEM approaches, namely the Distinct Element Methods and Discontinuous Deformation Analysis (DDA) for both rigid and deformable blocks and particle systems, and also the Discrete Fracture Network (DFN) approach for fluid flow and solute transport simulations. The latter is actually also a discrete approach of importance for rock mechanics and rock engineering. In addition, brief introductions to some alternative approaches are also provided, such as percolation theory and Cosserat micromechanics equivalence to particle systems, which often appear hand-in-hand with the DEM in the literature. Fundamentals of the particle mechanics approach using DEM for granular media is also presented.

· Presents the fundamental concepts of the discrete models for fractured rocks, including constitutive models of rock fractures and rock masses for stress, deformation and fluid flow
· Provides a comprehensive presentation on discrete element methods, including distinct elements, discontinuous deformation analysis, discrete fracture networks, particle mechanics and Cosserat representation of granular media
· Features constitutive models of rock fractures and fracture system characterization methods detaiing their significant impacts on the performance and uncertainty of the DEM models
1111341216
Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications
This book presents some fundamental concepts behind the basic theories and tools of discrete element methods (DEM), its historical development, and its wide scope of applications in geology, geophysics and rock engineering. Unlike almost all books available on the general subject of DEM, this book includes coverage of both explicit and implicit DEM approaches, namely the Distinct Element Methods and Discontinuous Deformation Analysis (DDA) for both rigid and deformable blocks and particle systems, and also the Discrete Fracture Network (DFN) approach for fluid flow and solute transport simulations. The latter is actually also a discrete approach of importance for rock mechanics and rock engineering. In addition, brief introductions to some alternative approaches are also provided, such as percolation theory and Cosserat micromechanics equivalence to particle systems, which often appear hand-in-hand with the DEM in the literature. Fundamentals of the particle mechanics approach using DEM for granular media is also presented.

· Presents the fundamental concepts of the discrete models for fractured rocks, including constitutive models of rock fractures and rock masses for stress, deformation and fluid flow
· Provides a comprehensive presentation on discrete element methods, including distinct elements, discontinuous deformation analysis, discrete fracture networks, particle mechanics and Cosserat representation of granular media
· Features constitutive models of rock fractures and fracture system characterization methods detaiing their significant impacts on the performance and uncertainty of the DEM models
200.0 In Stock
Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications

Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications

Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications

Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications

eBook

$200.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This book presents some fundamental concepts behind the basic theories and tools of discrete element methods (DEM), its historical development, and its wide scope of applications in geology, geophysics and rock engineering. Unlike almost all books available on the general subject of DEM, this book includes coverage of both explicit and implicit DEM approaches, namely the Distinct Element Methods and Discontinuous Deformation Analysis (DDA) for both rigid and deformable blocks and particle systems, and also the Discrete Fracture Network (DFN) approach for fluid flow and solute transport simulations. The latter is actually also a discrete approach of importance for rock mechanics and rock engineering. In addition, brief introductions to some alternative approaches are also provided, such as percolation theory and Cosserat micromechanics equivalence to particle systems, which often appear hand-in-hand with the DEM in the literature. Fundamentals of the particle mechanics approach using DEM for granular media is also presented.

· Presents the fundamental concepts of the discrete models for fractured rocks, including constitutive models of rock fractures and rock masses for stress, deformation and fluid flow
· Provides a comprehensive presentation on discrete element methods, including distinct elements, discontinuous deformation analysis, discrete fracture networks, particle mechanics and Cosserat representation of granular media
· Features constitutive models of rock fractures and fracture system characterization methods detaiing their significant impacts on the performance and uncertainty of the DEM models

Product Details

ISBN-13: 9780080551852
Publisher: Elsevier Science
Publication date: 07/18/2007
Series: Developments in Geotechnical Engineering , #85
Sold by: Barnes & Noble
Format: eBook
Pages: 562
File size: 26 MB
Note: This product may take a few minutes to download.

Table of Contents

Foreword. Preface. 1. Introduction. Part 1: Fundamentals. 2. Governing equations for motion and deformation of block systems and heat transfer. 3. Constitutive models of rock fractures and rock masses - the basics. 4. Fluid flow and coupled hydro-mechanical behaviour of rock fractures. Part 2: Fracture System Characterization and Block Model Construction. 5. Basics of characterization of fracture systems - field mapping and stochastic simulations. 6. Basics of combinatorial topology for block system representation. 7. Numerical techniques for block system construction. Part 3: DEM approaches. 8. Explicit discrete element method for block systems – the distinct element method. 9. Implicit Discrete Element Method for block systems – discontinuous deformation analysis (DDA). 10. Discrete Fracture Network (DFN) method. 11. Discrete Element Methods for granular materials. Part 4: Application Studies. 12. Case studies of Discrete Element Methods in geology, geophysics and rock engineering. Appendix. Subject Index.
From the B&N Reads Blog

Customer Reviews