Lectures on Modules and Rings / Edition 1

Lectures on Modules and Rings / Edition 1

by Tsit-Yuen Lam
ISBN-10:
0387984283
ISBN-13:
9780387984285
Pub. Date:
10/23/1998
Publisher:
Springer New York
ISBN-10:
0387984283
ISBN-13:
9780387984285
Pub. Date:
10/23/1998
Publisher:
Springer New York
Lectures on Modules and Rings / Edition 1

Lectures on Modules and Rings / Edition 1

by Tsit-Yuen Lam

Hardcover

$85.45
Current price is , Original price is $89.95. You
$85.45  $89.95 Save 5% Current price is $85.45, Original price is $89.95. You Save 5%.
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

This is the long awaited sequel to Lam's earlier GTM 131 "A First Course in Noncommutative Ring Theory" which came out in 1991 and which was praised in the American Math Monthly by Lance Small: "The book is beautifully written with many illuminating examples and exercises. ... I eagerly await Lam's second volume and confidently recommend his first". This new book can be read independently from the first volume. More from the reviews for the new book: "Lam is an extremely reliable writer. His manuscripts are carefully organized and well written and the mathematics he treats is interesting and important".

This new book can be read independently from the first volume and is intended to be used for lecturing, seminar- and self-study, and for general reference. It is focused more on specific topics in order to introduce the reader to a wealth of basic and useful ideas without the hindrance of heavy machinery or undue abstractions. This volume is particularly user-friendly with its abundance of examples illustrating the theory virtually at every step. A large number of carefully chosen exercises serves the dual purpose of providing practice to newcomers to the field, and offering a rich additional source of information to experts.


Product Details

ISBN-13: 9780387984285
Publisher: Springer New York
Publication date: 10/23/1998
Series: Graduate Texts in Mathematics Series , #189
Edition description: 1999
Pages: 557
Product dimensions: 6.10(w) x 9.25(h) x 0.36(d)

Table of Contents

1 Free Modules, Projective, and Injective Modules.- 1. Free Modules.- 1A. Invariant Basis Number (IBN).- 1B. Stable Finiteness.- 1C. The Rank Condition.- 1D. The Strong Rank Condition.- 1E. Synopsis.- Exercises for §1.- 2. Projective Modules.- 2A. Basic Definitions and Examples.- 2B. Dual Basis Lemma and Invertible Modules.- 2C. Invertible Fractional Ideals.- 2D. The Picard Group of a Commutative Ring.- 2E. Hereditary and Semihereditary Rings.- 2F. Chase Small Examples.- 2G. Hereditary Artinian Rings.- 2H. Trace Ideals.- Exercises for §2.- 3. Injective Modules.- 3A. Baer’s Test for Injectivity.- 3B. Self-Injective Rings.- 3C. Injectivity versus Divisibility.- 3D. Essential Extensions and Injective Hulls.- 3E. Injectives over Right Noetherian Rings.- 3F. Indecomposable Injectives and Uniform Modules.- 3G. Injectives over Some Artinian Rings.- 3H. Simple Injectives.- 31. Matlis’ Theory.- 3J. Some Computations of Injective Hulls.- 3K. Applications to Chain Conditions.- Exercises for §3.- 2 Flat Modules and Homological Dimensions.- 4. Flat and Faithfully Flat Modules.- 4A. Basic Properties and Flatness Tests.- 4B. Flatness, Torsion-Freeness, and von Neumann Regularity.- 4C. More Flatness Tests.- 4D. Finitely Presented (f.p.) Modules.- 4E. Finitely Generated Flat Modules.- 4F. Direct Products of Flat Modules.- 4G. Coherent Modules and Coherent Rings.- 4H. Semihereditary Rings Revisited.- 41. Faithfully Flat Modules.- 4J. Pure Exact Sequences.- Exercises for §4.- 5. Homological Dimensions.- 5A. Schanuel’s Lemma and Projective Dimensions.- 5B. Change of Rings.- 5C. Injective Dimensions.- 5D. Weak Dimensions of Rings.- 5E. Global Dimensions of Semiprimary Rings.- 5F. Global Dimensions of Local Rings.- 5G. Global Dimensions of Commutative Noetherian Rings.- Exercises for §5.- 3 More Theory of Modules.- 6. Uniform Dimensions, Complements, and CS Modules.- 6A. Basic Definitions and Properties.- 6B. Complements and Closed Submodules.- 6C. Exact Sequences and Essential Closures.- 6D. CS Modules: Two Applications.- 6E. Finiteness Conditions on Rings.- 6F. Change of Rings.- 6G. Quasi-Injective Modules.- Exercises for §6.- 7. Singular Submodules and Nonsingular Rings.- 7A. Basic Definitions and Examples.- 7B. Nilpotency of the Right Singular Ideal.- 7C. Goldie Closures and the Reduced Rank.- 7D. Baer Rings and Rickart Rings.- 7E. Applications to Hereditary and Semihereditary Rings.- Exercises for §7.- 8. Dense Submodules and Rational Hulls.- 8A. Basic Definitions and Examples.- 8B. Rational Hull of a Module.- 8C. Right Kasch Rings.- Exercises for §8.- 4 Rings of Quotients.- 9. Noncommutative Localization.- 9A. “The Good’.- 9B. “The Bad’.- 9C. “The Ugly”.- 9D. An Embedding Theorem of A. Robinson.- Exercises for §9.- 10. Classical Rings of Quotients.- 10A. Ore Localizations.- 10B. Right Ore Rings and Domains.- 10C. Polynomial Rings and Power Series Rings.- 10D. Extensions and Contractions.- Exercises for §10.- 11. Right Goldie Rings and Goldie’s Theorems.- 11A. Examples of Right Orders.- 11B. Right Orders in Semisimple Rings.- 11C. Some Applications of Goldie’s Theorems.- 11D. Semiprime Rings.- 11E. Nil Multiplicatively Closed Sets.- Exercises for §11.- 12. Artinian Rings of Quotients.- 12A. Goldie’s—-Rank.- 12B. Right Orders in Right Artinian Rings.- 12C. The Commutative Case.- 12D. Noetherian Rings Need Not Be Ore.- Exercises for §12.- 5 More Rings of Quotients.- 13. Maximal Rings of Quotients.- 13A. Endomorphism Ring of a Quasi-Injective Module.- 13B. Construction of Qrmax(R).- 13C. Another Description of Qrmax(R).- 13D. Theorems of Johnson and Gabriel.- Exercises for §13.- 14. Martindale Rings of Quotients.- 14A. Semiprime Rings Revisited.- 14B. The Rings Qr(R) and Qs(R).- 14C. The Extended Centroid.- 14D. Characterizations of and Qr(R) and Qs(R).- 14E. X-Inner Automorphisms.- 14F. A Matrix Ring Example.- Exercises for §14.- 6 Frobenius and Quasi-Frobenius Rings.- 15. Quasi-Frobenius Rings.- 15A. Basic Definitions of QF Rings.- 15B. Projectives and Injectives.- 15C. Duality Properties.- 15D. Commutative QF Rings, and Examples.- Exercises for §15.- 16. Frobenius Rings and Symmetric Algebras.- 16A. The Nakayama Permutation.- 16B. Definition of a Frobenius Ring.- 16C. Frobenius Algebras and QF Algebras.- 16D. Dimension Characterizations of Frobenius Algebras.- 16E. The Nakayama Automorphism.- 16F. Symmetric Algebras.- 16G. Why Frobenius?.- Exercises for §16.- 7 Matrix Rings, Categories of Modules, and Morita Theory.- 17. Matrix Rings.- 17A. Characterizations and Examples.- 17B. First Instance of Module Category Equivalences.- 17C. Uniqueness of the Coefficient Ring.- Exercises for §17.- 18. Morita Theory of Category Equivalences.- 18A. Categorical Properties.- 18B. Generators and Progenerators.- 18C. The Morita Context.- 18D. Morita I, II, III.- 18E. Consequences of the Morita Theorems.- 18F. The Category— [M].- Exercises for §18.- 19. Morita Duality Theory.- 19A. Finite Cogeneration and Cogenerators.- 19B. Cogenerator Rings.- 19C. Classical Examples of Dualities.- 19D. Morita Dualities: Morita I.- 19E. Consequences of Morita I.- 19F. Linear Compactness and Reflexivity.- 19G. Morita Dualities: Morita II.- Exercises for §19.- References.- Name Index.

From the B&N Reads Blog

Customer Reviews