Multivariable Analysis
1013601985
Multivariable Analysis
99.0 Out Of Stock
Multivariable Analysis

Multivariable Analysis

by Griffith B. Price
Multivariable Analysis

Multivariable Analysis

by Griffith B. Price

Paperback(Softcover reprint of the original 1st ed. 1984)

$99.00 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers

Product Details

ISBN-13: 9781461297475
Publisher: Springer New York
Publication date: 09/26/2011
Edition description: Softcover reprint of the original 1st ed. 1984
Pages: 656
Sales rank: 214,810
Product dimensions: 6.10(w) x 9.25(h) x 0.05(d)

Table of Contents

Differentiate Functions and Their Derivatives.- 1. Introduction.- 2. Definitions and Notation.- 3. Elementary Properties of Differentiable Functions.- 4. Derivatives of Composite Functions.- 5. Compositions with Linear Functions.- 6. Classes of Differentiable Functions.- 7. The Derivative as an Operator.- Uniform Differentiability and Approximations; Mappings.- 8. Introduction.- 9. The Mean-Value Theorem: A Generalization.- 10. Uniform Differentiability.- 11. Approximation of Increments of Functions.- 12. Applications: Theorems on Mappings.- Simplexes, Orientations, Boundaries, and Simplicial Subdivisions.- 13. Introduction.- 14. Barycentric Coordinates, Convex Sets, and Simplexes.- 15. Orientation of Simplexes.- 16. Complexes and Chains.- 17. Boundaries of Simplexes and Chains.- 18. Boundaries in a Euclidean Complex.- 19. Affine and Barycentric Transformations.- 20. Three Theorems on Determinants.- 21. Simplicial Subdivisions.- Sperner’s Lemma and the Intermediate-Value Theorem.- 22. Introduction.- 23. Sperner Functions; Sperner’s Lemma.- 24. A Special Class of Sperner Functions.- 25. Properties of the Degree of a Function.- 26. The Degree of a Curve.- 27. The Intermediate-Value Theorem.- 28. Sperner’s Lemma Generalized.- 29. Generalizations to Higher Dimensions.- The Inverse-Function Theorem.- 30. Introduction.- 31. The One-Dimensional Case.- 32. The First Step: A Neighborhood is Covered.- 33. The Inverse-Function Theorem.- Integrals and the Fundamental Theorem of the Integral Calculus.- 34. Introduction.- 35. The Riemann Integral in—n.- 36. Surface Integrals in—n.- 37. Integrals on an m-Simplex in—n.- 38. The Fundamental Theorem of the Integral Calculus.- 39. The Fundamental Theorem of the Integral Calculus for Surfaces.- 40. The Fundamental Theorem on Chains.- 41. Stokes’ Theorem and Related Results.- 42. The Mean-Value Theorem.- 43. An Addition Theorem for Integrals.- 44. Integrals Which Are Independent of the Path.- 45. The Area of a Surface.- 46. Integrals of Uniformly Convergent Sequences of Functions.- Zero Integrals, Equal Integrals, and the Transformation of Integrals.- 47. Introduction.- 48. Some Integrals Which Have the Value Zero.- 49. Integrals Over Surfaces with the Same Boundary.- 50. Integrals on Affine Surfaces with the Same Boundary.- 51. The Change-of-Variable Theorem.- The Evaluation of Integrals.- 52. Introduction.- 53. Definitions.- 54. Functions and Primitives.- 55. Integrals and Evaluations.- 56. The Existence of Primitives: Derivatives of a Single Function.- 57. The Existence of Primitives: The General Case.- 58. Iterated Integrals.- The Kronecker Integral and the Sperner Degree.- 59. Preliminaries.- 60. The Area and the Volume of a Sphere.- 61. The Kronecker Integral.- 62. The Kronecker Integral and the Sperner Degree.- Differentiable Functions of Complex Variables.- 63. Introduction.- I: Functions of a Single Complex Variable.- 64. Differentiable Functions; The Cauchy—Riemann Equations.- 65. The Stolz Condition.- 66. Integrals.- 67. A Special Case of Cauchy’s Integral Theorem.- 68. Cauchy’s Integral Formula.- 69. Taylor Series for a Differentiable Function.- 70. Complex-Valued Functions of Real Variables.- 71. Cauchy’s Integral Theorem.- II: Functions of Several Complex Variables.- 72. Derivatives.- 73. The Cauchy—Riemann Equations and Differentiability.- 74. Cauchy’s Integral Theorem.- Determinants.- 75. Introduction to Determinants.- 76. Definition of the Determinant of a Matrix.- 77. Elementary Properties of Determinants.- 78. Definitions and Notation.- 79. Expansions of Determinants.- 80. The Multiplication Theorems.- 81. Sylvester’s Theorem of 1839 and 1851.- 82. The Sylvester—Franke Theorem.- 83. The Bazin—Reiss—Picquet Theorem.- 84. Inner Products.- 85. Linearly Independent and Dependent Vectors; Rank of a Matrix.- 86. Schwarz’s Inequality.- 87. Hadamard’s Determinant Theorem.- Real Numbers, Euclidean Spaces, and Functions.- 88. Some Properties of the Real Numbers.- 93. The Nested Interval Theorem.- 94. The Bolzano—Weierstrass Theorem.- 95. The Heine—Borel Theorem.- 96. Functions.- 97. Cauchy Sequences.- References and Notes.- Index of Symbols.
From the B&N Reads Blog

Customer Reviews