Periodicity and Stochastic Trends in Economic Time Series

This book provides a self-contained account of periodic models for seasonally observed economic time series with stochastic trends. Two key concepts are periodic integration and periodic cointegration. Periodic integration implies that a seasonally varying differencing filter is required to remove a stochastic trend. Periodic cointegration amounts to allowing cointegration paort-term adjustment parameters to vary with the season. The emphasis is on useful econrameters and shometric models that explicitly describe seasonal variation and can reasonably be interpreted in terms of economic behaviour. The analysis considers econometric theory, Monte Carlo simulation, and forecasting, and it is illustrated with numerous empirical time series. A key feature of the proposed models is that changing seasonal fluctuations depend on the trend and business cycle fluctuations. In the case of such dependence, it is shown that seasonal adjustment leads to inappropriate results.

About the Series
Advanced Texts in Econometrics is a distinguished and rapidly expanding series in which leading econometricians assess recent developments in such areas as stochastic probability, panel and time series data analysis, modeling, and cointegration. In both hardback and affordable paperback, each volume explains the nature and applicability of a topic in greater depth than possible in introductory textbooks or single journal articles. Each definitive work is formatted to be as accessible and convenient for those who are not familiar with the detailed primary literature.

1100484942
Periodicity and Stochastic Trends in Economic Time Series

This book provides a self-contained account of periodic models for seasonally observed economic time series with stochastic trends. Two key concepts are periodic integration and periodic cointegration. Periodic integration implies that a seasonally varying differencing filter is required to remove a stochastic trend. Periodic cointegration amounts to allowing cointegration paort-term adjustment parameters to vary with the season. The emphasis is on useful econrameters and shometric models that explicitly describe seasonal variation and can reasonably be interpreted in terms of economic behaviour. The analysis considers econometric theory, Monte Carlo simulation, and forecasting, and it is illustrated with numerous empirical time series. A key feature of the proposed models is that changing seasonal fluctuations depend on the trend and business cycle fluctuations. In the case of such dependence, it is shown that seasonal adjustment leads to inappropriate results.

About the Series
Advanced Texts in Econometrics is a distinguished and rapidly expanding series in which leading econometricians assess recent developments in such areas as stochastic probability, panel and time series data analysis, modeling, and cointegration. In both hardback and affordable paperback, each volume explains the nature and applicability of a topic in greater depth than possible in introductory textbooks or single journal articles. Each definitive work is formatted to be as accessible and convenient for those who are not familiar with the detailed primary literature.

69.54 Out Of Stock
Periodicity and Stochastic Trends in Economic Time Series

Periodicity and Stochastic Trends in Economic Time Series

by Philip Hans Franses
Periodicity and Stochastic Trends in Economic Time Series

Periodicity and Stochastic Trends in Economic Time Series

by Philip Hans Franses

Paperback

$69.54 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book provides a self-contained account of periodic models for seasonally observed economic time series with stochastic trends. Two key concepts are periodic integration and periodic cointegration. Periodic integration implies that a seasonally varying differencing filter is required to remove a stochastic trend. Periodic cointegration amounts to allowing cointegration paort-term adjustment parameters to vary with the season. The emphasis is on useful econrameters and shometric models that explicitly describe seasonal variation and can reasonably be interpreted in terms of economic behaviour. The analysis considers econometric theory, Monte Carlo simulation, and forecasting, and it is illustrated with numerous empirical time series. A key feature of the proposed models is that changing seasonal fluctuations depend on the trend and business cycle fluctuations. In the case of such dependence, it is shown that seasonal adjustment leads to inappropriate results.

About the Series
Advanced Texts in Econometrics is a distinguished and rapidly expanding series in which leading econometricians assess recent developments in such areas as stochastic probability, panel and time series data analysis, modeling, and cointegration. In both hardback and affordable paperback, each volume explains the nature and applicability of a topic in greater depth than possible in introductory textbooks or single journal articles. Each definitive work is formatted to be as accessible and convenient for those who are not familiar with the detailed primary literature.


Product Details

ISBN-13: 9780198774549
Publisher: Oxford University Press, USA
Publication date: 08/28/1996
Series: Advanced Texts in Econometrics Series
Pages: 248
Product dimensions: 6.19(w) x 9.19(h) x 0.51(d)
Lexile: 1520L (what's this?)

Table of Contents

1. Introduction
2. Concepts in Time Series Analysis
3. An introduction to seasonal time series
4. Seasonal adjustment
5. Seasonal integration and cointegration
6. Are seasons, trends, and cycles always independent?
7. Periodic autoregressive time series models
8. Periodic integration
9. Periodic cointegration
10. Conclusion
Data Appendix

From the B&N Reads Blog

Customer Reviews