Quantum Machine Learning: What Quantum Computing Means to Data Mining

Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research.

Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications.

  • Bridges the gap between abstract developments in quantum computing with the applied research on machine learning
  • Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing
  • Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research
1118900383
Quantum Machine Learning: What Quantum Computing Means to Data Mining

Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research.

Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications.

  • Bridges the gap between abstract developments in quantum computing with the applied research on machine learning
  • Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing
  • Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research
94.95 In Stock
Quantum Machine Learning: What Quantum Computing Means to Data Mining

Quantum Machine Learning: What Quantum Computing Means to Data Mining

by Peter Wittek
Quantum Machine Learning: What Quantum Computing Means to Data Mining

Quantum Machine Learning: What Quantum Computing Means to Data Mining

by Peter Wittek

eBook

$94.95 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research.

Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications.

  • Bridges the gap between abstract developments in quantum computing with the applied research on machine learning
  • Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing
  • Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research

Product Details

ISBN-13: 9780128010990
Publisher: Elsevier Science
Publication date: 09/10/2014
Sold by: Barnes & Noble
Format: eBook
Pages: 176
File size: 5 MB

About the Author

Peter Wittek received his PhD in Computer Science from the National University of Singapore, and he also holds an MSc in Mathematics. He is interested in interdisciplinary synergies, such as scalable learning algorithms on supercomputers, computational methods in quantum simulations, and quantum machine learning. He collaborated on these topics during research stints to various institutions, including the Indian Institute of Science, Barcelona Supercomputing Center, Bangor University, Tsinghua University, the Centre for Quantum Technologies, and the Institute of Photonic Sciences. He has been involved in major EU research projects, and obtained several academic and industry grants.

Table of Contents

Introduction
Chapter 1: Machine Learning
Chapter 2: Quantum Mechanics
Chapter 3: Quantum Computing
Chapter 4: Unsupervised Learning
Chapter 5: Pattern Recognition and Neural Networks
Chapter 6: Supervised Learning and SUpport Vector Machines
Chapter 7: Regression Analysis
Chapter 8: Boosting
Chapter 9: Clustering Structure and Quantum Computing
Chapter 10: Quantum Pattern Recognition
Chapter 11: Quantum Classification
Chapter 12: Quantum Process Tomography
Chapter 13: Boosting and Adiabatic Quantum Computing
From the B&N Reads Blog

Customer Reviews