Scattering Amplitudes in Gauge Theory and Gravity
Providing a comprehensive, pedagogical introduction to scattering amplitudes in gauge theory and gravity, this book is ideal for graduate students and researchers. It offers a smooth transition from basic knowledge of quantum field theory to the frontier of modern research. Building on basic quantum field theory, the book starts with an introduction to the spinor helicity formalism in the context of Feynman rules for tree-level amplitudes. The material covered includes on-shell recursion relations, superamplitudes, symmetries of N=4 super Yang–Mills theory, twistors and momentum twistors, Grassmannians, and polytopes. The presentation also covers amplitudes in perturbative supergravity, 3D Chern–Simons matter theories, and color-kinematics duality and its connection to 'gravity=(gauge theory)x(gauge theory)'. Basic knowledge of Feynman rules in scalar field theory and quantum electrodynamics is assumed, but all other tools are introduced as needed. Worked examples demonstrate the techniques discussed, and over 150 exercises help readers absorb and master the material.
1119855834
Scattering Amplitudes in Gauge Theory and Gravity
Providing a comprehensive, pedagogical introduction to scattering amplitudes in gauge theory and gravity, this book is ideal for graduate students and researchers. It offers a smooth transition from basic knowledge of quantum field theory to the frontier of modern research. Building on basic quantum field theory, the book starts with an introduction to the spinor helicity formalism in the context of Feynman rules for tree-level amplitudes. The material covered includes on-shell recursion relations, superamplitudes, symmetries of N=4 super Yang–Mills theory, twistors and momentum twistors, Grassmannians, and polytopes. The presentation also covers amplitudes in perturbative supergravity, 3D Chern–Simons matter theories, and color-kinematics duality and its connection to 'gravity=(gauge theory)x(gauge theory)'. Basic knowledge of Feynman rules in scalar field theory and quantum electrodynamics is assumed, but all other tools are introduced as needed. Worked examples demonstrate the techniques discussed, and over 150 exercises help readers absorb and master the material.
52.0 In Stock
Scattering Amplitudes in Gauge Theory and Gravity

Scattering Amplitudes in Gauge Theory and Gravity

by Henriette Elvang, Yu-tin Huang
Scattering Amplitudes in Gauge Theory and Gravity

Scattering Amplitudes in Gauge Theory and Gravity

by Henriette Elvang, Yu-tin Huang

eBook

$52.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

Providing a comprehensive, pedagogical introduction to scattering amplitudes in gauge theory and gravity, this book is ideal for graduate students and researchers. It offers a smooth transition from basic knowledge of quantum field theory to the frontier of modern research. Building on basic quantum field theory, the book starts with an introduction to the spinor helicity formalism in the context of Feynman rules for tree-level amplitudes. The material covered includes on-shell recursion relations, superamplitudes, symmetries of N=4 super Yang–Mills theory, twistors and momentum twistors, Grassmannians, and polytopes. The presentation also covers amplitudes in perturbative supergravity, 3D Chern–Simons matter theories, and color-kinematics duality and its connection to 'gravity=(gauge theory)x(gauge theory)'. Basic knowledge of Feynman rules in scalar field theory and quantum electrodynamics is assumed, but all other tools are introduced as needed. Worked examples demonstrate the techniques discussed, and over 150 exercises help readers absorb and master the material.

Product Details

ISBN-13: 9781316189580
Publisher: Cambridge University Press
Publication date: 02/05/2015
Sold by: Barnes & Noble
Format: eBook
File size: 64 MB
Note: This product may take a few minutes to download.

About the Author

Henriette Elvang is Associate Professor in the Department of Physics, University of Michigan. She has worked on various aspects of high energy theoretical physics, including black holes in string theory, scattering amplitudes, and the structure of gauge theories.
Yu-tin Huang is Assistant Professor at the National Taiwan University. He is known for his work in the study of scattering amplitudes beyond four dimensions, most notably in 3-dimensional Chern–Simons matter theory.

Table of Contents

Preface; 1. Introduction; Part I. Trees: 2. Spinor helicity formalism; 3. On-shell recursion relations at tree-level; 4. Supersymmetry; 5. Symmetries of N = 4 SYM; Part II. Loops: 6. Loop amplitudes and generalized unitarity; 7. BCFW recursion for loops; 8. Leading singularities and on-shell diagrams; Part III. Topics: 9. Grassmannia; 10. Polytopes; 11. Amplitudes beyond four dimensions; 12. Supergravity amplitudes; 13. A colorful duality; 14. Further reading; Appendix; References; Index.
From the B&N Reads Blog

Customer Reviews