Solid-State Laser Engineering / Edition 6

Solid-State Laser Engineering / Edition 6

by Walter Koechner
ISBN-10:
038729094X
ISBN-13:
9780387290942
Pub. Date:
04/19/2006
Publisher:
Springer New York
ISBN-10:
038729094X
ISBN-13:
9780387290942
Pub. Date:
04/19/2006
Publisher:
Springer New York
Solid-State Laser Engineering / Edition 6

Solid-State Laser Engineering / Edition 6

by Walter Koechner
$223.99
Current price is , Original price is $279.99. You
$223.99  $279.99 Save 20% Current price is $223.99, Original price is $279.99. You Save 20%.
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

Written from an industrial perspective, Solid-State Laser Engineering discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. Since its first edition almost 30 years ago this book has become the standard in the field of solid-state lasers for scientists,engineers and graduate students. This new edition has been extensively revised and updated to account for recent developments in the areas of diode-laser pumping, laser materials and nonlinear crystals. Completely new sections have been added dealing with frequency control, the theory of mode-locking, femto second lasers, high efficiency harmonic generation, passive and acousto-optic Q-switching, semiconductor saturable absorber mirrors (SESAM) and peridically poled nonlinear crystals.


Product Details

ISBN-13: 9780387290942
Publisher: Springer New York
Publication date: 04/19/2006
Series: Springer Series in Optical Sciences , #1
Edition description: 6th, rev. and updated ed. 2006
Pages: 750
Product dimensions: 5.98(w) x 9.02(h) x 0.36(d)

About the Author

Walter Koechner received a doctorate in electrical engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state lasers, optics and solid-state physics. Dr. Koechner is founder of Fibertek, Inc., a research company specializing in the design, development and production of advanced solid-state lasers, optical radars, and remote sensing systems.

Table of Contents


Preface     vii
Introduction     1
Energy Transfer Between Radiation and Atomic Transitions     11
Optical Amplification     11
Interaction of Radiation with Matter     12
Blackbody Radiation     12
Boltzmann's Statistics     13
Einstein's Coefficients     14
Phase Coherence of Stimulated Emission     17
Absorption and Optical Gain     18
Atomic Lineshapes     18
Absorption by Stimulated Transitions     22
Population Inversion     25
Creation of a Population Inversion     27
The Three-Level System     27
The Four-Level System     29
The Metastable Level     30
Laser Rate Equations     32
The Three-Level System     33
The Four-Level System     35
Comparison of Three- and Four-Level Lasers     36
Properties of Solid-State Laser Materials     38
Overview     40
Host Materials     40
Active Ions     45
Ruby     51
Nd:Lasers     54
Nd:YAG     54
Nd:Glass     61
Nd:Cr:GSGG     64
Nd:YLF     66
Nd:YVO[subscript 4]     69
Er:Lasers     73
Er:YAG     73
Er:Glass     75
Tunable Lasers     79
Alexandrite Laser     84
Ti:Sapphire     88
Cr:LiSAF     91
Tm:YAG     94
Yb:YAG     97
Laser Oscillator     102
Operation at Threshold     103
Gain Saturation     108
Circulating Power     109
Oscillator Performance Model     111
Conversion of Input to Output Energy     112
Laser Output     118
Relaxation Oscillations     128
Theory     128
Spike Suppression     132
Gain Switching     133
Examples of Laser Oscillators     134
Lamp-Pumped cw Nd:YAG Laser     134
Diode Side-Pumped Nd:YAG Laser     139
End-Pumped Systems     148
Ring Laser     152
Laser Amplifier     156
Single- and Multiple-Pass Pulse Amplifiers     157
Pulse Amplification     158
Nd:YAG Amplifiers     163
Nd:Glass Amplifiers      171
Multipass Amplifier Configurations     177
Regenerative Amplifiers     180
cw Amplifiers     188
Signal Distortions     190
Spatial Distortions     190
Temporal Distortions     193
Depopulation Losses     194
Amplified Spontaneous Emission     195
Prelasing and Parasitic Modes     198
Reduction of Depopulation Losses     199
Self-Focusing     200
Whole-Beam Self-Focusing     201
Examples of Self-focusing in Nd:YAG Lasers     203
Small-Scale Self-Focusing     206
Suppression of Self-Focusing     207
Optical Resonator     210
Transverse Modes     210
Intensity Distribution     211
Characteristics of a Gaussian Beam     215
Resonator Configurations     217
Stability of Laser Resonators     221
Diffraction Losses     223
Higher-Order Modes     224
Mode Selection     227
Active Resonator     231
Examples of Resonator Designs     238
Resonator Modeling and Software Packages     254
Longitudinal Modes     255
The Fabry-Perot Interferometer     255
Laser Resonator with Gain Medium     259
Longitudinal Mode Control     263
Injection Seeding     268
Intensity and Frequency Control     271
Amplitude Fluctuations     271
Frequency Tuning     274
Frequency Locking     276
Hardware Design     278
Unstable Resonators     282
Confocal Positive-Branch Unstable Resonator     284
Negative-Branch Unstable Resonator     287
Variable Reflectivity Output Couplers     289
Gain, Mode Size, and Alignment Sensitivity     295
Wavelength Selection     297
Optical Pump Systems     300
Pump Sources     300
Flashlamps     303
Continuous Arc Lamps     334
Laser Diodes     340
Pump Radiation Transfer Methods     366
Side-Pumping with Lamps     368
Side-Pumping with Diodes     393
End-Pumped Lasers     407
Face-Pumped Disks     418
Thermo-Optic Effects     423
Cylindrical Geometry     426
Temperature Distribution     426
Thermal Stresses      437
Photoelastic Effects     440
Thermal Lensing     442
Stress Birefringence     445
Compensation of Optical Distortions     449
Slab and Disk Geometries     457
Rectangular-Slab Laser     458
Slab Laser with Zigzag Optical Path     461
Disk Amplifiers and Lasers     469
End-Pumped Configurations     473
Thermal Gradients and Stress     473
Thermal Lensing     477
Thermal Fracture Limit     479
Thermal Management     481
Liquid Cooling     481
Conduction Cooling     485
Air/Gas Cooling     486
Q-Switching     488
Q-Switch Theory     488
Fast Q-Switch     490
Slow Q-Switching     493
Continuously Pumped, Repetitively Q-Switched Systems     494
Mechanical Q-Switches     498
Electro-Optical Q-Switches     499
KDP and KD*P Pockels Cells     502
LiNbO[subscript 3] Pockels Cells     506
Prelasing and Postlasing     508
Depolarization Losses     511
Drivers for Electro-Optic Q-Switches     514
Acousto-Optic Q-Switches      514
Bragg Reflection     516
Device Characteristics     519
Passive Q-Switches     522
Cavity Dumping     529
Mode Locking     534
Pulse Formation     535
Passive Mode Locking     542
Liquid Dye Saturable Absorber     543
Coupled-Cavity Mode Locking     546
Kerr Lens Mode Locking     548
Semiconductor Saturable Absorber Mirror (SESAM)     556
Active Mode Locking     560
cw Mode Locking     561
Transient Active Mode Locking     564
Picosecond Lasers     568
AM Mode Locking     569
FM Mode Locking     572
Femtosecond Lasers     575
Laser Materials     575
Dispersion Compensation     576
Examples of Kerr Lens or SESAM Mode-Locked Femtosecond Lasers     579
Chirped Pulse Amplifiers     584
Nonlinear Devices     587
Nonlinear Optical Effects     587
Second-Order Nonlinearities     589
Third-Order Nonlinearities     590
Harmonic Generation     592
Basic Theory of Second Harmonic Generation     594
Phase Matching     602
Properties of Nonlinear Crystals     611
Intracavity Frequency Doubling     618
Third Harmonic Generation     625
Examples of Harmonic Generation     629
Optical Parametric Oscillators     634
Performance Modeling     637
Crystals     649
Quasi Phase Matching     652
Design and Performance     655
Raman Laser     662
Theory     663
Device Implementation     666
Optical Phase Conjugation     669
Basic Considerations     669
Material Properties     671
Focusing Geometry     673
Pump-Beam Properties     673
System Design     676
Damage of Optical Elements     680
Surface Damage     681
Inclusion Damage     684
Damage Threshold of Optical Materials     684
Scaling Laws     685
Laser Host Materials     688
Optical Glass     689
Nonlinear Crystals     690
Dielectric Thin Films     694
System Design Considerations     698
Choice of Materials     698
Design of System     699
System Operation     700
Laser Safety     702
Conversion Factors and Constants     708
Definition of Symbols     711
References     716
Subject Index     742
From the B&N Reads Blog

Customer Reviews