0

    Where Good Ideas Come From: The Natural History of Innovation

    4.3 23

    by Steven Johnson


    Paperback

    $20.00
    $20.00

    Temporarily Out of Stock Online

    Customer Reviews

    • ISBN-13: 9781594485381
    • Publisher: Penguin Publishing Group
    • Publication date: 10/04/2011
    • Pages: 344
    • Sales rank: 69,479
    • Product dimensions: 5.40(w) x 8.20(h) x 1.00(d)
    • Age Range: 18Years

    Steven Johnson is the bestselling author of Future Perfect, Where Good Ideas Come From, The Invention of Air, The Ghost Map, and Everything Bad is Good for You, and is the editor of The Innovator's Cookbook. He is the founder of a variety of influential websites and writes for Time, WiredThe New York Times, and The Wall Street Journal. He lives in Marin County, California, with his wife and three sons.

    Read an Excerpt

    Introduction

    REEF, CITY, WEB
     

    . . . as imagination bodies forth
    The forms of things unknown, the poet’s pen
    Turns them to shapes and gives to airy nothing
    A local habitation and a name.

    —SHAKESPEARE, A Midsummer Night’s Dream, V.i.14-17

    Darwin’s Paradox

    April 4, 1836. Over the eastern expanse of the Indian Ocean, the reliable northeast winds of monsoon season have begun to give way to the serene days of summer. On the Keeling Islands, two small atolls composed of twenty-seven coral islands six hundred miles west of Sumatra, the emerald waters are invitingly placid and warm, their hue enhanced by the brilliant white sand of disintegrated coral. On one stretch of shore usually guarded by stronger surf, the water is so calm that Charles Darwin wades out, under the vast blue sky of the tropics, to the edge of the live coral reef that rings the island.

    For hours he stands and paddles among the crowded pageantry of the reef. Twenty-seven years old, seven thousand miles from London, Darwin is on the precipice, standing on an underwater peak ascending over an unfathomable sea. He is on the edge of an idea about the forces that built that peak, an idea that will prove to be the first great scientific insight of his career. And he has just begun exploring another hunch, still hazy and unformed, that will eventually lead to the intellectual summit of the nineteenth century.

    Around him, the crowds of the coral ecosystem dart and shimmer. The sheer variety dazzles: butterflyfish, damselfish, parrotfish, Napoleon fish, angelfish; golden anthias feeding on plankton above the cauliflower blooms of the coral; the spikes and tentacles of sea urchins and anemones. The tableau delights Darwin’s eye, but already his mind is reaching behind the surface display to a more profound mystery. In his account of the Beagle’s voyage, published four years later, Darwin would write: “It is excusable to grow enthusiastic over the infinite numbers of organic beings with which the sea of the tropics, so prodigal of life, teems; yet I must confess I think those naturalists who have described, in well-known words, the submarine grottoes decked with a thousand beauties, have indulged in rather exuberant language.”

    What lingers in the back of Darwin’s mind, in the days and weeks to come, is not the beauty of the submarine grotto but rather the “infinite numbers” of organic beings. On land, the flora and fauna of the Keeling Islands are paltry at best. Among the plants, there is little but “cocoa-nut” trees, lichen, and weeds. “The list of land animals,” he writes, “is even poorer than that of the plants”: a handful of lizards, almost no true land birds, and those recent immigrants from European ships, rats. “The island has no domestic quadruped excepting the pig,” Darwin notes with disdain.

    Yet just a few feet away from this desolate habitat, in the coral reef waters, an epic diversity, rivaled only by that of the rain forests, thrives. This is a true mystery. Why should the waters at the edge of an atoll support so many different livelihoods? Extract ten thousand cubic feet of water from just about anywhere in the Indian Ocean and do a full inventory on the life you find there: the list would be about as “poor” as Darwin’s account of the land animals of the Keelings. You might find a dozen fish if you were lucky. On the reef, you would be guaranteed a thousand. In Darwin’s own words, stumbling across the ecosystem of a coral reef in the middle of an ocean was like encountering a swarming oasis in the middle of a desert. We now call this phenomenon Darwin’s Paradox: so many different life forms, occupying such a vast array of ecological niches, inhabiting waters that are otherwise remarkably nutrient-poor. Coral reefs make up about one-tenth of one percent of the earth’s surface, and yet roughly a quarter of the known species of marine life make their homes there. Darwin doesn’t have those statistics available to him, standing in the lagoon in 1836, but he has seen enough of the world over the preceding four years on the Beagle to know there is something peculiar in the crowded waters of the reef.

    The next day, Darwin ventures to the windward side of the atoll with the Beagle’s captain, Vice Admiral James FitzRoy, and there they watch massive waves crash against the coral’s white barrier. An ordinary European spectator, accustomed to the calmer waters of the English Channel or the Mediterranean, would be naturally drawn to the impressive crest of the surf. (The breakers, Darwin observes, are almost “equal in force [to] those during a gale of wind in the temperate regions, and never cease to rage.”) But Darwin has his eye on something else—not the violent surge of water but the force that resists it: the tiny organisms that have built the reef itself.

    The ocean throwing its waters over the broad reef appears an invincible, all-powerful enemy; yet we see it resisted, and even conquered, by means which at first seem most weak and inefficient. It is not that the ocean spares the rock of coral; the great fragments scattered over the reef, and heaped on the beach, whence the tall cocoa-nut springs, plainly bespeak the unrelenting power of the waves . . . Yet these low, insignificant coral-islets stand and are victorious: for here another power, as an antagonist, takes part in the contest. The organic forces separate the atoms of carbonate of lime, one by one, from the foaming breakers, and unite them into a symmetrical structure. Let the hurricane tear up its thousand huge fragments; yet what will that tell against the accumulated labour of myriads of architects at work night and day, month after month?

    Darwin is drawn to those minuscule architects because he believes they are the key to solving the mystery that has brought the Beagle to the Keeling Islands. In the Admiralty’s memorandum authorizing the ship’s five-year journey, one of the principal scientific directives is the investigation of atoll formation. Darwin’s mentor, the brilliant geologist Charles Lyell, had recently proposed that atolls are created by undersea volcanoes that have been driven upward by powerful movements in the earth’s crust. In Lyell’s theory, the distinctive circular shape of an atoll emerges as coral colonies construct reefs along the circumference of the volcanic crater. Darwin’s mind had been profoundly shaped by Lyell’s understanding of the deep time of geological transformation, but standing on the beach, watching the breakers crash against the coral, he knows that his mentor is wrong about the origin of the atolls. It is not a story of simple geology, he realizes. It is a story about the innovative persistence of life. And as he mulls the thought, there is a hint of something else in his mind, a larger, more encompassing theory that might account for the vast scope of life’s innovations. The forms of things unknown are turning, slowly, into shapes.

    Days later, back on the Beagle, Darwin pulls out his journal and reflects on that mesmerizing clash between surf and coral. Presaging a line he would publish thirty years later in the most famous passage from On the Origin of Species, Darwin writes, “I can hardly explain the reason, but there is to my mind much grandeur in the view of the outer shores of these lagoon-islands.” In time, the reason would come to him.

    The Superlinear City

    From an early age, the Swiss scientist Max Kleiber had a knack for testing the edges of convention. As an undergraduate in Zurich in the 1910s, he roamed the streets dressed in sandals and an open collar, shocking attire for the day. During his tenure in the Swiss army, he discovered that his superiors had been trading information with the Germans, despite the official Swiss position of neutrality in World War I. Appalled, he simply failed to appear at his next call-up, and was ultimately jailed for several months. By the time he had settled on a career in agricultural science, he had had enough of the restrictions of Zurich society. And so Max Kleiber charted a path that would be followed by countless sandal-wearing, nonconformist war protesters in the decades to come. He moved to California.

    Kleiber set up shop at the agricultural college run by the University of California at Davis, in the heart of the fertile Central Valley. His research initially focused on cattle, measuring the impact body size had on their metabolic rates, the speed with which an organism burns through energy. Estimating metabolic rates had great practical value for the cattle industry, because it enabled farmers to predict with reasonable accuracy both how much food their livestock would require, and how much meat they would ultimately produce after slaughter. Shortly after his arrival at Davis, Kleiber stumbled across a mysterious pattern in his research, a mathematical oddity that soon brought a much more diverse array of creatures to be measured in his lab: rats, ring doves, pigeons, dogs, even humans.

    Scientists and animal lovers had long observed that as life gets bigger, it slows down. Flies live for hours or days; elephants live for half-centuries. The hearts of birds and small mammals pump blood much faster than those of giraffes and blue whales. But the relationship between size and speed didn’t seem to be a linear one. A horse might be five hundred times heavier than a rabbit, yet its pulse certainly wasn’t five hundred times slower than the rabbit’s. After a formidable series of measurements in his Davis lab, Kleiber discovered that this scaling phenomenon stuck to an unvarying mathematical script called “negative quarter-power scaling.” If you plotted mass versus metabolism on a logarithmic grid, the result was a perfectly straight line that led from rats and pigeons all the way up to bulls and hippopotami.

    Physicists were used to discovering beautiful equations like this lurking in the phenomena they studied, but mathematical elegance was a rarity in the comparatively messy world of biology. But the more species Kleiber and his peers analyzed, the clearer the equation became: metabolism scales to mass to the negative quarter power. The math is simple enough: you take the square root of 1,000, which is (approximately) 31, and then take the square root of 31, which is (again, approximately) 5.5. This means that a cow, which is roughly a thousand times heavier than a woodchuck, will, on average, live 5.5 times longer, and have a heart rate that is 5.5 times slower than the woodchuck’s. As the science writer George Johnson once observed, one lovely consequence of Kleiber’s law is that the number of heartbeats per lifetime tends to be stable from species to species. Bigger animals just take longer to use up their quota.

    Over the ensuing decades, Kleiber’s law was extended down to the microscopic scale of bacteria and cell metabolism; even plants were found to obey negative quarter-power scaling in their patterns of growth. Wherever life appeared, whenever an organism had to figure out a way to consume and distribute energy through a body, negative quarter-power scaling governed the patterns of its development.

    Several years ago, the theoretical physicist Geoffrey West decided to investigate whether Kleiber’s law applied to one of life’s largest creations: the superorganisms of human-built cities. Did the “metabolism” of urban life slow down as cities grew in size? Was there an underlying pattern to the growth and pace of life of metropolitan systems? Working out of the legendary Santa Fe Institute, where he served as president until 2009, West assembled an international team of researchers and advisers to collect data on dozens of cities around the world, measuring everything from crime to household electrical consumption, from new patents to gasoline sales.

    When they finally crunched the numbers, West and his team were delighted to discover that Kleiber’s negative quarter-power scaling governed the energy and transportation growth of city living. The number of gasoline stations, gasoline sales, road surface area, the length of electrical cables: all these factors follow the exact same power law that governs the speed with which energy is expended in biological organisms. If an elephant was just a scaled-up mouse, then, from an energy perspective, a city was just a scaled-up elephant.

    But the most fascinating discovery in West’s research came from the data that didn’t turn out to obey Kleiber’s law. West and his team discovered another power law lurking in their immense database of urban statistics. Every datapoint that involved creativity and innovation—patents, R&D budgets, “supercreative” professions, inventors—also followed a quarter-power law, in a way that was every bit as predictable as Kleiber’s law. But there was one fundamental difference: the quarter-power law governing innovation was positive, not negative. A city that was ten times larger than its neighbor wasn’t ten times more innovative; it was seventeen times more innovative. A metropolis fifty times bigger than a town was 130 times more innovative.

    Kleiber’s law proved that as life gets bigger, it slows down. But West’s model demonstrated one crucial way in which human-built cities broke from the patterns of biological life: as cities get bigger, they generate ideas at a faster clip. This is what we call “superlinear scaling”: if creativity scaled with size in a straight, linear fashion, you would of course find more patents and inventions in a larger city, but the number of patents and inventions per capita would be stable. West’s power laws suggested something far more provocative: that despite all the noise and crowding and distraction, the average resident of a metropolis with a population of five million people was almost three times more creative than the average resident of a town of a hundred thousand. “Great cities are not like towns only larger,” Jane Jacobs wrote nearly fifty years ago. West’s positive quarter-power law gave that insight a mathematical foundation. Something about the environment of a big city was making its residents significantly more innovative than residents of smaller towns. But what was it?

    The 10/10 Rule

    The first national broadcast of a color television program took place on January 1, 1954, when NBC aired an hour-long telecast of the Tournament of Roses parade, and distributed it to twenty-two cities across the country. For those lucky enough to see the program, the effect of a moving color image on a small screen seems to have been mesmerizing. The New York Times, in typical language, called it a “veritable bevy of hues and depth.” “To concentrate so much color information within the frame of a small screen,” the Times wrote, “would be difficult for even the most gifted artist doing a ‘still’ painting. To do it with constantly moving pictures seemed pure wizardry.” Alas, the Rose Parade “broadcast” turned out to be not all that broad, given that it was visible only on prototype televisions in RCA showrooms. Color programming would not become standard on prime-time shows until the late 1960s. After the advent of color, the basic conventions that defined the television image would go unchanged for decades. The delivery mechanisms began to diversify with the introduction of VCRs and cable in the late 1970s. But the image remained the same.

    In the mid-1980s, a number of influential media and technology executives, along with a few visionary politicians, had the eminently good idea that it was time to upgrade the video quality of broadcast television. Speeches were delivered, committees formed, experimental prototypes built, but it wasn’t until July 23, 1996, that a Raleigh, North Carolina, CBS affiliate initiated the first public transmission of an HDTV signal. Like the Tournament of Roses footage, though, there were no ordinary consumers with sets capable of displaying its “wizardry.”1 A handful of broadcasters began transmitting HDTV signals in 1999, but HD television didn’t become a mainstream consumer phenomenon for another five years. Even after the FCC mandated that all television stations cease broadcasting the old analog standard on June 12, 2009, more than 10 percent of U.S. households had televisions that went dark that day.

    It is one of the great truisms of our time that we live in an age of technological acceleration; the new paradigms keep rolling in, and the intervals between them keep shortening. This acceleration reflects not only the flood of new products, but also our growing willingness to embrace these strange new devices, and put them to use. The waves roll in at ever-increasing frequencies, and more and more of us are becoming trained surfers, paddling out to meet them the second they start to crest. But the HDTV story suggests that this acceleration is hardly a universal law. If you measure how quickly a new technology progresses from an original idea to mass adoption, then it turns out that HDTV was traveling at the exact same speed that color television had traveled four decades earlier. It took ten years for color TV to go from the fringes to the mainstream; two generations later, it took HDTV just as long to achieve mass success.

    In fact, if you look at the entirety of the twentieth century, the most important developments in mass, one-to-many communications clock in at the same social innovation rate with an eerie regularity. Call it the 10/10 rule: a decade to build the new platform, and a decade for it to find a mass audience. The technology standard of amplitude-modulated radio—what we now call AM radio—evolved in the first decade of the twentieth century. The first commercial AM station began broadcasting in 1920, but it wasn’t until the late 1920s that radios became a fixture in American households. Sony inaugurated research into the first consumer videocassette recorder in 1969, but didn’t ship its first Betamax for another seven years, and VCRs didn’t become a household necessity until the mid-eighties. The DVD player didn’t statistically replace the VCR in American households until 2006, nine years after the first players went on the market. Cell phones, personal computers, GPS navigation devices—all took a similar time frame to go from innovation to mass adoption.

    Consider, as an alternate scenario, the story of Chad Hurley, Steve Chen, and Jawed Karim, three former employees of the online payment site PayPal, who decided in early 2005 that the Web was ripe for an upgrade in the way it handled video and sound. Video, of course, was not native to the Web, which had begun its life fifteen years before as a platform for academics to share hypertext documents. But over the years, video clips had begun to trickle their way online, thanks to new video standards that emerged, such as Quick-Time, Flash, or Windows Media Player. But the mechanisms that allowed people to upload and share their own videos were too challenging for most ordinary users. So Hurley, Chen, and Karim cobbled together a rough beta for a service that would correct these deficiencies, raised less than $10 million in venture capital, hired about two dozen people, and launched YouTube, a website that utterly transformed the way video information is shared online. Within sixteen months of the company’s founding, the service was streaming more than 30 million videos a day. Within two years, YouTube was one of the top-ten most visited sites on the Web. Before Hurley, Chen, and Karim hit upon their idea for a start-up, video on the Web was as common as subtitles on television. The Web was about doing things with text, and uploading the occasional photo. YouTube brought Web video into the mainstream.

    Now compare the way these two ideas—HDTV and YouTube— changed the basic rules of engagement for their respective platforms. Going from analog television to HDTV is a change in degree, not in kind: there are more pixels; the sound is more immersive; the colors are sharper. But consumers watch HDTV the exact same way they watched old-fashioned analog TV. They choose a channel, and sit back and watch. YouTube, on the other hand, radically altered the basic rules of the medium. For starters, it made watching video on the Web a mass phenomenon. But with YouTube you weren’t limited to sitting and watching a show, television-style; you could also upload your own clips, recommend or rate other clips, get into a conversation about them. With just a few easy keystrokes, you could take a clip running on someone else’s site, and drop a copy of it onto your own site. The technology allowed ordinary enthusiasts to effectively program their own private television networks, stitching together video clips from all across the planet.

    Some will say that this is merely a matter of software, which is intrinsically more adaptable than hardware like televisions or cellular phones. But before the Web became mainstream in the mid-1990s, the pace of software innovation followed the exact same 10/10 pattern of development that we saw in the spread of other twentieth-century technologies. The graphical user interface, for instance, dates back to a famous technology demo given by pioneering computer scientist Doug Engelbart in 1968. During the 1970s, many of its core elements—like the now ubiquitous desktop metaphor—were developed by researchers at Xerox-PARC. But the first commercial product with a fully realized graphical user interface didn’t ship until 1981, in the form of the Xerox Star workstation, followed by the Macintosh in 1984, the first graphical user interface to reach a mainstream, if niche, audience. But it wasn’t until the release of Windows 3.0 in 1990—almost exactly ten years after the Xerox Star hit the market—that graphical user interfaces became the norm. The same pattern occurs in the developmental history of other software genres, such as word processors, spreadsheets, or e-mail clients. They were all built out of bits, not atoms, but they took just as long to go from idea to mass success as HDTV did.

    There are many ways to measure innovation, but perhaps the most elemental yardstick, at least where technology is concerned, revolves around the job that the technology in question lets you do. All other things being equal, a breakthrough that lets you execute two jobs that were impossible before is twice as innovative as a breakthrough that lets you do only one new thing. By that measure, YouTube was significantly more innovative than HDTV, despite the fact that HDTV was a more complicated technical problem. YouTube let you publish, share, rate, discuss, and watch video more efficiently than ever before. HDTV let you watch more pixels than ever before. But even with all those extra layers of innovation, YouTube went from idea to mass adoption in less than two years. Something about the Web environment had enabled Hurley, Chen, and Karim to unleash a good idea on the world with astonishing speed. They took the 10/10 rule and made it 1/1.

    What People are Saying About This

    Walter Isaacson

    Steven Johnson is the Darwin of technology. Through fascinating observations and insights, he enlightens us about the origin of ideas. How do you create environments and networks that promote innovation? Johnson discovers patterns that help clarify that critical question. (Walter Isaacson, author of the bestselling Einstein: His Life and Universe)

    From the Publisher

    “[A] rich, integrated and often sparkling book.  Mr. Johnson, who knows a thing or two about the history of science, is a first-rate storyteller.”—The New York Times

    “A vision of innovation and ideas that is resolutely social, dynamic and material…Fluidly written, entertaining and smart without being arcane.”—Los Angeles Times

    “A magical mystery tour of the history and architecture of innovation.”—The Oregonian

    “A rapid-fire tour of ‘spaces’ large, small, mental, physical, and otherwise… Where Good Ideas Come From may be the ultimate distillation of his thinking on these issues… One admires the intellectual athleticism of Johnson’s maneuvers here.”—Boston Globe

    Eligible for FREE SHIPPING details

    .

    The printing press, the pencil, the flush toilet, the battery—these are all great ideas. But where do they come from? What kind of environment breeds them? What sparks the flash of brilliance? How do we generate the breakthrough technologies that push forward our lives, our society, our culture? Steven Johnson's answers are revelatory as he identifies the seven key patterns behind genuine innovation, and traces them across time and disciplines. From Darwin and Freud to the halls of Google and Apple, Johnson investigates the innovation hubs throughout modern time and pulls out the approaches and commonalities that seem to appear at moments of originality.

    Customers Who Bought This Item Also Bought

    Recently Viewed 

    Adam Hanft

    Where Good Ideas Come From, Steven Johnson's new and elevating book, slots with a firm click into the category I've come to think of as "pattern porn." It's a relatively new genre, and a hot one, congested as it is with specimens like The Tipping Point and Freakonomics, as well as Johnson's own handiwork, the strategically contrarian bestseller Everything Bad is Good For You.

    Definition: Pattern porn is a genre of non-fiction characterized by a seductive thesis that is supported by an ingenious arrangement of scientific support -- manipulatively cherry-picked, in the eyes of some critics -- and lush anecdotal juxtapositions that are voyeuristically irresistible.

    The Tipping Point is the poster-child of this genus; Malcolm Gladwell's brainiac hop-scotching made the case for his theory of popularity by analyzing (seemingly) disparate phenomena -- like the spread of syphilis in Baltimore, the curious popularity of Hush Puppies, the drop in the New York City crime rate, and teen suicide in Micronesia.

    Similarly, Freakonomics beckoned by revealing the explanatory glue of incentives that linked phenomena as scattered as legalized abortion, crime, and the sociological impacts of kids' names, and that also answered the sexy question, "Why do drug dealers still live with their moms?"

    Where Good Ideas Come From: The Natural History of Innovation follows this now-familiar structure. Johnson sees himself as a Grand Explainer; here, he sets about to investigate the genesis of ideas, insights, and innovation. If there's a single focus to his mission, it's to move beyond the folklore that ideas usually emerge with unpredictable spontaneity, in a mythic flash.

    Johnson is drawn to precisely the opposite position, and spends much of the book supporting it -- that ideas rely on networks and environments and collisions of consciousness. The power of this thesis is that if he can show us that new ideas do emerge from a predictable set of circumstances, then we can create systems and structures that accelerate the fermentation and adaptation of innovation. The social utility of that would be extraordinary.

    But it's a daunting task, given the range of disciplines in which new ideas take shape. To organize the sprawl, Johnson quickly establishes some fixed principles -- a "series of shared properties" as he puts it -- and then buttresses his framework with a dazzlingly eclectic array (and display) that integrates details immense and nano, moving easily from biology to technology to music to the sexual reproduction of fleas to the failure to identify the 9/11 terrorists to Greenwich Village to anthropology to evolutionary theory.

    Johnson's shared properties serve as chapters; they have memorable monikers like "The Adjacent Possible," "Liquid Networks", "The Slow Hunch," and "Exaptation." These largely aren't his coinages; Exaptation belongs to Stephen Jay Gould, Adjacent Possible to Stuart Kauffman; but Johnson is clever enough to retrieve and promote them. They are hot hooks built for today's media world.

    Like its recent ancestors, Where Good Ideas Come From is a tight choreography of ideas in motion. It's a well-plotted swirl, and Johnson's jumpy pastiche style is made for our ADD reading behaviors. Just as you're about to get bored with a technical explanation of two young physicists discovering how to track the Sputnik's course in 1957, Johnson traces the path by which that Eisenhower-era necessity led to the development of GPS, and lassoes it to Silicon Valley's "Homebrew Computing Club," Freud's salon, and 18th-century English coffeehouses. The author always knows his destination, even when the reader is lost. He delights in befuddling his passengers, navigating one historical hairpin turn after another, until finally the valley of clarity emerges.

    A chapter like Exaptation shows why Johnson is a master at the erotic titillation of pattern porn. Exaptation is a term from evolutionary biology for the way an "organism develops a trait optimized for a specific use, but then the trait gets hijacked for a completely different function." But Johnson goes further and promotes exaptation into an overarching metaphor for creative larceny. To demonstrate, the chapter lurches from Pliny the Elder, who described a wine press in his Naturalis Historiae, to Gutenberg, who became aware of this device through his brief time as a winemaker, and later deployed the technology to make the printing press possible. Johnson notes that "[a]n important part of Gutenberg's genius… lay not in conceiving an entirely new technology from scratch, but instead borrowing a mature technology from an entirely different field and putting it to work to solve an unrelated problem."

    Using the notion that discovery is "more bricolage than breakthrough," Johnson's orgy of connectivity continues. He uses exaptation to show how punch cards -- created by an early 18th-century French weaver to produce complex silk patterns -- led to Charles Babbage's Analytic Engine, a proto-computer. In fact, punch cards "would remain crucial to programmable computers until the 1970s," leading to the development of the vacuum tube, which in turn made possible the ENIAC -- a computer that could do "the math on the physics of a hydrogen bomb."

    Exaptation also explains (a) the creation of the Web -- pretty much every principle in the book is validated by the Internet; (b) the jump from Edouard Dujardin's 1888 novel Les Lauriers sont coupés to Joyce's Ulysses (Johnson's polymathic skills stumble a bit on literature); and (c) Francis Crick's report that he first hit upon the DNA replication model by thinking of the way that plaster casts eventuate into sculpture.

    The same phenomenon also explains why the fertile interactions in big cities lead to better ideas -- the "coffeehouse model of creativity" -- and accounts as well for Apple's stunning success, despite its penchant for secrecy.

    The other chapters follow a similar daisy chain of inspiration. "The Adjacent Possible" limns the way that ideas emerge from neighboring possibilities, with "each innovation opening up new paths to explore." In one of his favorite linkages, Johnson points out how this applies to both natural and man-made systems, starting with the "fatty acids that self-assembled into the first membrane." From this he takes a grand jeté to Stéphane Tarnier, the 19th-century Parisian obstetrician who hatched an adjacent possible from chicken incubators, using the insight to create versions for human infants that reduced the death rate of low-weight babies from 66% to 38%.

    Continuing the history of the incubator, Johnson describes a solution to the ongoing tragedy of infant mortality in the developing world. Modern incubators are complex; when they break down, struggling countries lack the technical expertise or parts to fix them. The repair manuals are written in English. Once again, the adjacent possible provides the breakthrough; an MIT professor realized that there was an ample supply of people who knew how to fix cars, and of auto parts. So Timothy Prospero created an incubator that runs on local mechanical skills and available automobile componentry.

    These examples are meaningful to Johnson because they demonstrate that ideas aren't limited by available reality, but are in fact inspired by it. He writes, "Good ideas are not conjured out of thin air; they are built out of a collection of existing parts."

    The "Platforms" chapter describes a different kind of generative -- Johnson is in love with that word -- power, one which allows for the layering on of innovation. Some of these platforms are basic science, like the work of Darwin, upon which have been stacked population genetics, molecular genetics, evolutionary psychology, and other disciplines.

    Of course, the giant platform that's driven our economy in recent decades has been the Web, made possible by its "platform stack," which Timothy Berners-Lee -- one of Johnson's heroes -- created. Platform innovation on the open Internet is why three guys were able to build YouTube in a matter of months, "while an army of expert committees and electronics companies took twenty years to make HD a reality." Johnson is also radiant about Twitter and its open system that encourages fast innovation.

    These pillars of ingenuity are horizontal as well as vertical, they mush and mesh. So Johnson sees the notion of "Serendipity" as something that completes a "Slow Hunch" (two different chapters) because it "opens a door in the adjacent possible" (a third chapter.) He rattles off discoveries which were conceived in the chaos of a dream state -- the periodic table, the ring structure of the benzene molecule -- and connects that to waking activity by analyzing the brain states of "noise" and "phase-lock." Johnson gleefully notes that the more disorganized our brains are -- the noise state -- the smarter we are.

    The "Serendipity" chapter is also where Johnson reveals the hidden hand, the secret of his spooky ability to pull together often stunning juxtapositions from wildly different disciplines. It's an indexing software program called DEVONthink, where he stores everything -- notes, blogs, quotes, transcriptions -- for easy searching. He also uses it "improvisationally" -- as a sparking platform.

    Besides writing a brief history of imagination in Where Good Ideas Come From, Johnson is on two parallel missions of debunkery. He wants to retire the conventional wisdom that insight comes in a flash, the symbolic light bulb over our noggins. He argues that all the metaphors -- breakthroughs, eureka moments, epiphanies -- fail to capture "what an idea actually is." He argues that, "A good idea is a network. An idea is not a single thing. It is more like swarm." Johnson wants us to understand this because he believes that if we focus on creating environments that are particularly conducive to swarm cultivation -- concentrations of diverse intellectual energy in cities, universities, and other institutions -- what he calls, again, the "coffeehouse effect" -- society will profoundly benefit.

    There are other generally accepted notions Johnson happily un-accepts. He dismisses the idea that the Web mitigates serendipitous discovery; he thinks that traditional brainstorming is relatively useless; he believes errors can be the best thing that happen to us. One fascinating experiment he references shows that groups stimulated by false information were more creative than those that were fed the truth.

    Johnson is also an abiding advocate for openness -- open systems, platforms, protocols. He wants ideas to be unleashed so others can extend and ladder them into ever-increasing social beneficence. He passionately advocates for "open environments where ideas flow in unregulated channels." To demonstrate the value of open systems, Johnson breaks from the structure of his book in the last chapter. "The Fourth Quadrant" isn't another catchy mini-biography of innovation, it's Johnson's original research. He took 200 ideas over a 400-year period -- ranging from the printing press to the pencil to photosynthesis -- and broke them into four categories, based on whether they were the product of individual or collective activity, and whether they were done for profit or not.

    His conclusion: early in history, ideas were individual breakthroughs; "less than 10 percent of innovation during the Renaissance is networked." But as history marches ahead, "a clear majority of breakthrough ideas emerge in collaborative environments," and were not done for financial reward.

    This is a typically Johnsonian counter-intuitive finding. We'd expect that the geniuses of the Enlightenment -- Newton, Locke, Lavoisier -- worked outside of a financial incentive system. But even after the rise of industrial capitalism and patent protections in the early 18th century, Johnson finds that "… most commercial innovation… takes a collaborative form, with many individuals and firms contributing crucial tweaks and refinements…. The history books like to condense these slower, evolutionary processes into eureka moments dominated by a single inventor, but most of the key technologies that powered the Industrial Revolution were instances of what scholars call 'collective intervention.'"

    Johnson believes the future of good ideas will belong to the networked innovation that takes place outside the marketplace (in that flourishing "Fourth Quadrant" of his). And he's probably right. He's also evangelical: "To my mind, the great question for our time is whether large organizations -- public and private, governments and corporations alike -- can better harness the innovative turbine of fourth-quadrant systems."

    Where Good Ideas Come From is itself a very excellent idea, and in a meta kind of way it follows its precepts for discovery; Johnson uses exaptation and the unfurling of the adjacent possible in his own work. The book is science writing for a broad audience at its highest level -- accessible but challenging, humming with new ideas, and finally, inspiring.

    Yes, it suffers from pattern porn's inherent weaknesses: Johnson over-architects a bit, making the world too neat and tidy. And the book is stronger on the descriptive than prescriptive side. In fact, some of Johnson's recipes for innovation are a bit floppy: take a shower or long soak, go for a walk. He does provide some useful directions, though, for achieving some of his idea-readiness states, even if they are not particularly practical. Most of us -- other than the unfortunately unemployed, or the fortunately-employed academic -- don't have the ability to "carve out dedicated periods where you read a large and varied collection of books and essays in a condensed amount of time," even if it would help identify the adjacent possible.

    There is some advice to business -- relayed in the context of the FBI's failure to catch the 9/l1 terrorists because the hunch of an Arizona-based field agent wasn't sufficiently part of a liquid network -- that is useful. Johnson writes: "The secret to organizational inspiration is to build information networks that allow hunches to persist and disperse and recombine." The subject of this book could not be timelier, given that everyone is wondering where the next wave of innovation will emerge from, how the economy can find its mojo and create jobs for the 15 million unemployed. Such road-opening ideas can't be another Snuggli.

    Given the moment's urgency, it is likely Where Good Ideas Come From will be a genre-crossing book that ends up being embraced by the business community. Expect PowerPoint slides to be headlined "Finding The Adjacent Possible in the Female Energy Drink Category." Yet while businesses are desperate for innovation, in my experience it isn't a shortage of ideas that's the problem, it's innovation-killing cultures. That's because ideas are fragile at birth, with shallow respiration, like the premature infants in Stéphane Tarnier's incubator. A new idea for something that would keep a good idea from dying prematurely -- now that would be a fit subject for the sequel I hope Steven Johnson will come to write: How to Keep A Good Idea Alive.

    --Adam Hanft

    Publishers Weekly
    Johnson--writer, Web guru, and bestselling author of Everything Bad Is Good for You--delivers a sweeping look at innovation spanning nearly the whole of human history. What sparks our great ideas? Johnson breaks down the cultural, biological, and environmental fuel into seven broad "patterns," each packed with diverse, at times almost disjointed anecdotes that Johnson synthesizes into a recipe for success. A section on "slow hunches" captivates, taking readers from the FBI's work on 9/11 to Google's development of Google News. A section on error takes us through a litany of accidental innovations, including the one that eventually led to the invention of the computer. "Being right keeps you in place," Johnson reminds us. "eing wrong forces us to explore." It's eye-opening stuff--although it does require an investment from the reader. But as fans of the author's previous work know, an investment in Johnson pays off, and those who stick with the author as he meanders through an occasional intellectual digression will come away enlightened and entertained, and with something perhaps even more useful--how to recognize the conditions that could spark their own creativity and innovation. Another mind-opening work from the author of Mind Wide Open. (Oct.)
    Kirkus Reviews

    A modern, interdisciplinary analysis of the social-environmental patterns most suited to idea generation, and how we can use their lessons to foster innovation.

    Wired contributing editor Johnson (The Invention of Air: A Story of Science, Faith, Revolution, and the Birth of America, 2008, etc.) identifies seven such patterns: the adjacent possible, liquid networks, the slow hunch, serendipity, error, exaptation and emergent platforms. In each chapter, the author outlines the basic principle of a pattern, then contextualizes its importance with an array of historical and contemporary examples. He emphasizes the importance of the "space of innovation" as being paramount to success. An individual's genius, he argues, is less imperative than a fertile "intellectual ecosystem," and networks are vital, as evidenced by the astounding creative production of interconnectedsystems like the Internet and the vibrant densityof cities.Using the remarkable "epic diversity"of coral reefs as a metaphor, Johnson posits that an environment embracing an open flow of information and thought is more likely to produce ideas at a higher rate than a closed or hierarchicalnetwork. Combined with several more daily patterns, like writing everything down to aggregate a thought process or picking up a new hobby, soliciting such "liquid networks" is bound to help percolate that big idea. On a broader scale, businesses, schools and even the government would benefit from greater interconnectivity. The author notes that had the FBI had access to a greater information network in the weeks leading to 9/11, agents may have connected the dots to Mohamed Atta in time. Johnson also traces the origin of several magnificent ideas—Darwin's theory of evolution, Kekulé's insight into the molecular structure of benzene—and presents them in the context of one of the seven patterns. The author recounts dozens of examples in this vein, touching on fields as varying as economics, information technology, biology, social networking and literature. Throughout, his infectious enthusiasm and unyielding insight inspire and entertain.

    A robust volume that brings new perspective to an old subject.

    Read More

    Sign In Create an Account
    Search Engine Error - Endeca File Not Found